The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received partic...The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts.展开更多
We investigate the electronic properties of stableβ-UH3 under high pressure up to 75 GPa within the first-principles DFT+U formalism with pressure-dependent U in a self-consistent calculation,and we find an electroni...We investigate the electronic properties of stableβ-UH3 under high pressure up to 75 GPa within the first-principles DFT+U formalism with pressure-dependent U in a self-consistent calculation,and we find an electronic structure transition at about 20 GPa due to the quantum process of localization and itinerancy for partially filled uranium 5f electrons.The electronic structure transition is examined from four perspectives:magnetization,band structure,density of states,and 5f electron energy.On the basis of the density of states of 5f electrons,we propose an order parameter,namely,the 5f electron energy,to quantify the electronic structure transition under pressure.Analogously to the isostructural transition in 3d systems,β-UH3 retains its magnetic order after the electronic structure transition;however,this is not accompanied by volume collapse at the transition point.Our calculation is helpful for understanding the electronic properties ofβ-UH3 under high pressure.展开更多
The electronic structures of PF and PF+ are calculated with the high-level configuration interaction method. To improve the precision of calculations, the spin-orbit coupling effect, the scalar relativistic effect, a...The electronic structures of PF and PF+ are calculated with the high-level configuration interaction method. To improve the precision of calculations, the spin-orbit coupling effect, the scalar relativistic effect, and the Davidson correction(q-Q) are also considered. The spectroscopic parameters of bound states are derived by the electronic structures of PF and PF+, which are in good accordance with the measurements. The transition dipole moments of spin-allowed transitions are evaluated, and the radiative lifetimes of several A S states of PF and PF+ are obtained.展开更多
We report a theoretical study on the electronic structures of O2 chemisorbed on a(8,0) SWNT with different oxygen contents of 6.25,12.5 and 25%,respectively.On the basis of DFT calculations,we find that eight O2 mol...We report a theoretical study on the electronic structures of O2 chemisorbed on a(8,0) SWNT with different oxygen contents of 6.25,12.5 and 25%,respectively.On the basis of DFT calculations,we find that eight O2 molecules chemisorbed on the(8,0) SWNT aligned in the middle row of the circumference of the tube in proportional spacing way,is seen to become metallic,and a significant increase in conductivity is expected.There are different electronic structures of the functionalized systems related to different oxygen contents or O2 molecules' chemisorbed positions.展开更多
Seven new rare earth transition metal sulfates were synthesized by hydrothermal reactions under conditions slightly above the critical point of water. Their crystal structures were determined from single crystal X-ray...Seven new rare earth transition metal sulfates were synthesized by hydrothermal reactions under conditions slightly above the critical point of water. Their crystal structures were determined from single crystal X-ray data. The compositions of the new compounds can be represented by two general formulae : REM (OH) 3 (SO4) and RE2M (OH) 3 (SO4) 2F (H2O) with RE = Gd, Tb, Dy ; M = Ni, Cu. Three different crystal structure types were found for the formula REM (OH) 3 (SO4). The structures of the new compounds all feature infinite chains of REOn coordination polyhedra, which are connected to chains of CuO6 or NiO6 octabedra. The limited size range of the rare earth cations observed in these compounds is most likely because of interactions between the octabedral chains and the chains of REOn polyhedra. The new compounds are closely related to the known yttrium transition metal sulfates.展开更多
With transition metal complex, a discrete cuprous iodide compound, namely, [Ni(phen)3]2Cu6I10(1, phen = 1,10-phenanthroline) has been solvothermally synthesized and structurally characterized. Single-crystal X-ray...With transition metal complex, a discrete cuprous iodide compound, namely, [Ni(phen)3]2Cu6I10(1, phen = 1,10-phenanthroline) has been solvothermally synthesized and structurally characterized. Single-crystal X-ray diffraction studies revealed that compound 1 crystallizes in triclinic space group P1(No. 2) with a = 11.2694(2), b = 12.3699(3), c = 15.0387(3) ?, α = 102.840(2), β = 105.215(2), γ = 96.388(2)°, V = 1940.04(7) ^3, Z = 1, Dc = 2.438 g·cm^-3, F(000) = 1324, R = 0.0256 and w R = 0.0555(I 〉 2σ(I)). Compound 1 features a discrete anionic moiety of [Cu6I10]^4- charge-balanced by two metal complexes of [Ni(phen)3]2+. The optical absorption edge of compound 1 was estimated to be 2.24 eV. Interestingly, nearly 95% of contaminant(crystal violet aqueous solution(CV), 50 m L, 1.0 × 10^-5 M) could be decolorized after exposure to visible light within 30 min, illustrating an impressive photocatalytic activity of compound 1. The thermal stability of 1 has also been studied.展开更多
Since the correspondence between the impurity and its energy levels within the bands is not exactly known, it is difficult to assign the impurity according to its levels. In this work, several metallic impurities were...Since the correspondence between the impurity and its energy levels within the bands is not exactly known, it is difficult to assign the impurity according to its levels. In this work, several metallic impurities were intentionally doped into samples, then their energy levels were determined by DLTS.展开更多
In this paper first-principles calculations of Ni(111)/α-Al2O3(0001) interfaces have been performed, and are compared with the preceding results of the Cu (111)/α-Al2O3(0001) interface [2004 Phil. Mag. Left....In this paper first-principles calculations of Ni(111)/α-Al2O3(0001) interfaces have been performed, and are compared with the preceding results of the Cu (111)/α-Al2O3(0001) interface [2004 Phil. Mag. Left. 84 425]. The AI- terminated and O-terminated interfaces have quite different adhesion mechanisms, which are similar to the Cu(111)/α Al2O3(0001) interface. For the O-terminated interface, the adhesion is caused by the strong O-2p/Ni-3d orbital hybridization and ionic interactions. On the other hand, the adhesion nature of the Al-terminated interface is the image-like electrostatic and Ni-Al hybridization interactions, the latter is substantial and cannot be neglected. Charge transfer occurs from Al2O3 to Ni, which is opposite to that in the O=terminated interface. The charge transfer direction for the Al-terminated and O-terminated Ni(111)/α-A1203(0001) interfaces is similar to that in the corresponding Cu(111)/α- Al2O3(0001) interface, but there exist the larger charge transfer quantity and consequent stronger adhesion nature, respectively.展开更多
The diamond nanothread(DNT), a new one-dimensional(1 D) full carbon sp3 structure that has been successfully synthesized recently, has attracted widespread attention in the carbon community. By using the first-princip...The diamond nanothread(DNT), a new one-dimensional(1 D) full carbon sp3 structure that has been successfully synthesized recently, has attracted widespread attention in the carbon community. By using the first-principles calculation method of density functional theory(DFT), we have studied the effects of 3 d transition metal(TM) atomic doping on the electronic and magnetic properties of DNT. The results show that the spin-polarized semiconductor characteristics are achieved by doping Sc, V, Cr, Mn, and Co atoms in the DNT system. The magnetic moment ranges from 1.00 μB to 3.00 μB and the band gap value is from 0.35 e V to 2.54 e V. The Fe-doped DNT system exhibits spin-metallic state with a magnetic moment of 2.58 μB, while the Ti and Ni-doped DNT systems are nonmagnetic semiconductors. These results indicate that the 3 d TM atoms doping can modulate the electronic and magnetic properties of 1 D-DNT effectively, and the TM-doped DNT systems have potential applications in the fields of electronics, optoelectronics, and spintronics.展开更多
Employing the angle-resolved photoemission spectroscopy, we study the electronic structure of TaFe1.23Te3, a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional (2D) Fermi...Employing the angle-resolved photoemission spectroscopy, we study the electronic structure of TaFe1.23Te3, a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional (2D) Fermi surface is observed, with sizable inter-ladder hopping. Moreover, instead of observing an energy gap at the Fermi surface in the antiferromagnetic state, we observe the shifts of various bands. Combining these observations with density-functional-theory calculations, we propose that the large scale reconstruction of the electronic structure, caused by the interactions between the coexisting itinerant electrons and local moments, is most likely the driving force of the magnetic transition. Thus TaFe1.23Te3 serves as a simpler platform that contains similar ingredients to the parent compounds of iron-based superconductors.展开更多
The in situ valence band photoemission spectrum (PES) and X-ray absorption spectrum (XAS) at V LⅡ-LⅢ edges of the VO2 thin film, which is prepared by pulsed laser deposition, are measured across the metal–insul...The in situ valence band photoemission spectrum (PES) and X-ray absorption spectrum (XAS) at V LⅡ-LⅢ edges of the VO2 thin film, which is prepared by pulsed laser deposition, are measured across the metal–insulator transition (MIT) temperature (TMIT=67 ℃). The spectra show evidence for changes in the electronic structure depending on temperature. Across the TMIT, pure V 3d characteristic d‖ and O 2p-V 3d hybridization characteristic πpd, σpd bands vary in binding energy position and density of state distributions. The XAS reveals a temperature-dependent reversible energy shift at the V LⅢ-edge. The PES and XAS results imply a synergetic energy position shift of occupied valence bands and unoccupied conduction band states across the phase transition. A joint inspection of the PES and XAS results shows that the MIT is not a one-step process, instead it is a process in which a semiconductor phase appears as an intermediate state. The final metallic phase from insulating state is reached through insulator–semiconductor, semiconductor–metal processes, and vice versa. The conventional MIT at around the TMIT=67 ℃ is actually a semiconductor–insulator transformation point.展开更多
NdNiO_(3) is a typical correlated material with temperature-driven metal–insulator transition. Resolving the local electronic phase is crucial in understanding the driving mechanism behind the phase transition. Here ...NdNiO_(3) is a typical correlated material with temperature-driven metal–insulator transition. Resolving the local electronic phase is crucial in understanding the driving mechanism behind the phase transition. Here we present a nano-infrared study of the metal–insulator transition in NdNiO_(3) films by a cryogenic scanning near-field optical microscope. The NdNiO_(3) films undergo a continuous transition without phase coexistence. The nano-infrared signal shows significant temperature dependence and a hysteresis loop. Stripe-like modulation of the optical conductivity is formed in the films and can be attributed to the epitaxial strain. These results provide valuable evidence to understand the coupled electronic and structural transformations in NdNiO_(3) films at the nano-scale.展开更多
The electronic structure and magnetism of eskolaite are studied by using first-principles calculations where the on-site Coulomb interaction and the exchange interaction are taken into account and the LSDA+U method i...The electronic structure and magnetism of eskolaite are studied by using first-principles calculations where the on-site Coulomb interaction and the exchange interaction are taken into account and the LSDA+U method is used. The calculated energies of magnetic configurations are very well fitted by the Heisenberg Hamiltonian with interactions in five neighbour shells; interaction with two nearest neighbours is found to be dominant. The Neel temperature is calculated in the spin-3/2 pair-cluster approximation. It is found that the measurements are in good agreement with the calculations of lattice parameters, density of states, band gap, local magnetic moment, and the Neel temperature for the values of U and J that are close to those obtained within the constrained occupation method. The band gap is of the Mott-Hubbard type.展开更多
Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) un...Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) under high pressure by electrical resistance investigations,synchrotron x-ray diffraction,Raman scattering and theoretical calculations.Up to 70 GPa,an unusual metal-semiconductor-metal transition occurs.Our first-principles calculations suggest that the observed anti-Wilson transition from metal to semiconductor at 17 GPa is due to the electron localization induced by the intercalated Ti atoms.This electron localization is attributed to the strengthened coupling between the doped Ti atoms and S atoms,and the Anderson localization arising from the disordered intercalation.At pressures exceeding 30.5 GPa,the doped TiS_(2) undergoes a re-metallization transition initiated by a crystal structure phase transition.We assign the most probable space group as P2_(1)2_(1)2_(1).Our findings suggest that materials probably will eventually undergo the Wilson transition when subjected to sufficient pressure.展开更多
We investigated the structural evolution and elecfronic properties of ConC3-/0 and ConC4-/0 (n=1-4) clusters by using mass-selected photoelectron spectroscopy and density functional theory calculations. The adiabati...We investigated the structural evolution and elecfronic properties of ConC3-/0 and ConC4-/0 (n=1-4) clusters by using mass-selected photoelectron spectroscopy and density functional theory calculations. The adiabatic and vertical detachment energies of CO1-4C3- and COl-4C4- were obtained from their photoelectron spectra. By comparing the theoretical results with the experimental data, the global minimum structures were determined. The results indicate that the carbon atoms of ConC3-/0 and ConC4-/0 (n=1-4) are separated from each other gradually with increasing number of cobalt atoms but a C2 unit still remains at n=4. It is interesting that the Co2C3- and Co2C4- anions have planar structures whereas the neutral Co2C3 and Co2C4 have linear structures with the Co atoms at two ends. The Co3C3- anion has a planar structure with a Co2C2 four-membered ring and a Co3C four-membered ring sharing a Co-Co bond, while the neutral Co3C3 is a three-dimensional structure with a C2 unit and a C atom connecting to two faces of the Co3 triangle.展开更多
First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic prope...First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic properties of twodimensional transition metal dichalcogenides(TMDCs) with the formula of MX2(M = Mo, W; X = O, S, Se, Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO2 and WO2. When the monolayers are stacked into a bilayer, the reduced indirect band gaps are found except for bilayer WTe2, in which the direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to that of graphene, which promises possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and opt B88-vd W in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible.展开更多
A new homochiral ligand,(R)-2-(4-pyridyl)-4,5-dihydrothiazole-4-carboxylic acid(HL^R), has been synthesized. Two complexes, [ZnL2^R(H2O)2]·H2O(1) and [MnL2^R(H2O)2]?H2O(2) have been prepared by the...A new homochiral ligand,(R)-2-(4-pyridyl)-4,5-dihydrothiazole-4-carboxylic acid(HL^R), has been synthesized. Two complexes, [ZnL2^R(H2O)2]·H2O(1) and [MnL2^R(H2O)2]?H2O(2) have been prepared by the reactions of Zn(Ⅱ) and Mn(Ⅱ) ions with the ligand HLR, and characterized by single-crystal X-ray diffraction analysis and fluorescence. Complexes 1 and 2 are isomorphs, and both of the Zn(Ⅱ) and Mn(Ⅱ) centers in 1 and 2 are six-coordinated by the two NO units of two ligands and two water oxygen atoms, showing distorted octahedral coordination geometry. Complexes 1 and 2 show fluorescent properties in the solid state at room temperature.展开更多
Six new transition metal complexes, [Zn(HBTC)(PYTPY)]n·n PYTPY(1), [Cu(HBTC)(PYTPY)]n·n PYTPY(2), [Co(HBTC)(PYTPY)]n·n DMF(3), [Mn(HBTC)(PYTPY)]n·n DMF(4), [Cd(HBTC)(PYTP...Six new transition metal complexes, [Zn(HBTC)(PYTPY)]n·n PYTPY(1), [Cu(HBTC)(PYTPY)]n·n PYTPY(2), [Co(HBTC)(PYTPY)]n·n DMF(3), [Mn(HBTC)(PYTPY)]n·n DMF(4), [Cd(HBTC)(PYTPY)(H2O)]n·2nH2O(5), and [Co(HBTC)(PYTPY)(H2O)2](6),(H3BTC = 1,3,5-benzenetricarboxylic acid, PYTPY = 4'-(4-pyridyl)-2,2':6',2''-terpyridine, DMF = N,N?-dimethylformamide), have been synthesized and characterized by elemental analysis, IR and X-ray single-crystal diffraction. Complexes 1~5 all feature one-dimensional chain structures, and complex 6 exhibits a zero-dimensional structure. Complexes 1~5 present three-dimensional(3D) supramolecular frameworks via π-π stacking interactions, whenas 6 has also a 3D supramolecular structure assembled by hydrogen bonding. Meanwhile, complexes 1 ~ 6 exhibit the thermal stabilities and photoluminescent properties.展开更多
Two new coordination polymers,[Co(BIPA)(bpp)](1) and [Zn(BIPA)(bpp)(H2O)](2)(H2BIPA = 5-bromoisophthalic acid,bpp = 1,3-di(4-pyridyl)propane) have been synthesized via hydrothermal reactions.The two ...Two new coordination polymers,[Co(BIPA)(bpp)](1) and [Zn(BIPA)(bpp)(H2O)](2)(H2BIPA = 5-bromoisophthalic acid,bpp = 1,3-di(4-pyridyl)propane) have been synthesized via hydrothermal reactions.The two compounds were characterized by elemental analysis,IR spectra,TG analysis and single-crystal X-ray determination.Compound 1 crystallizes in triclinic,space group P1 with a = 9.0316(13),b = 10.1179(14),c = 11.8884(17) ,α = 68.022(2),β = 84.749(2),γ = 77.791(2)°,V = 984.5(2) 3,Z = 2,C21H17BrN2O4Co,Mr = 500.21,Dc = 1.687 g.cm-3,μ = 2.932 mm-1,S = 0.981,F(000) = 502,R = 0.0440 and wR = 0.1357 for 3773 observed reflections with I 2σ(I).Compound 2 crystallizes in the monoclinic system,space group P21/c with a = 7.8466(10),b = 27.483(4),c = 9.6583(13) ,β = 96.663(3)°,V = 2068.8(5) 3,Z = 4,C21H19BrN2O5Zn,Mr = 524.66,Dc = 1.685 g.cm-3,μ = 3.155 mm-1,S = 0.969,F(000) = 1056,R = 0.0441 and wR = 0.0517 for 4058 observed reflections with I 2σ(I).The two compounds are constructed from the BIPA2-and bpp ligands but they exhibit different kinds of one-dimensional chain structures.In 1,the chains are composed of the Co(Ⅱ) ions and BIPA2-ligands,and the chains are further extended into a 2D framework structure by π...π interactions of the benzene rings from the BIPA2-ligands between the adjacent chains.In 2,the chains are made up of Zn(Ⅱ) ions and BIPA2-ligands through another fashion,and the chains are further linked via hydrogen bonding interactions to yield a two-dimensional supramolecular layer structure.Furthermore,the bpp ligand features two kinds of different coordination modes in the two compounds.展开更多
RE 3Cu 3Sb 4(RE=Nd, Sm, Tb, Dy, Ho) was synthesized by arc melting method and their crystal structures were characterized by powder X ray method. The compounds crystallize in cubic system, Y 3Au 3Sb 4 type, sp...RE 3Cu 3Sb 4(RE=Nd, Sm, Tb, Dy, Ho) was synthesized by arc melting method and their crystal structures were characterized by powder X ray method. The compounds crystallize in cubic system, Y 3Au 3Sb 4 type, space group I43d (No.220), Pearson code cI40. The unit cell parameters are: Nd 3Cu 3Sb 4: a =0 96749(1) nm, V =0 90561(3) nm 3; Sm 3Cu 3Sb 4: a =0 96145(1) nm, V =0 88875(3) nm 3; Tb 3Cu 3Sb 4: a =0 95362(1) nm, V =0 86721(3) nm 3; Dy 3Cu 3Sb 4: a =0 95088(1) nm, V =0 85975(3) nm 3; Ho 3Cu 3Sb 4: a =0 9488(2) nm, V =0 8541(5) nm 3; Z =4. The structures are characterized by covalent bonded Cu Sb tetrahedra which form three dimensional networks by sharing corners. The rare earth atoms are distributed in the cages. The formula with the charge balance can be written as RE 3+ 3Cu 1+ 3Sb 3- 4 which are metallic Zintl phases having the weak metallic conductivity. The bonds have typical transitional features. General atomic coordination environment rules are followed. The unit cell parameters show the lanthanide contraction.展开更多
基金supported by the National Natural Science Foundation of China(22374119,21902128)the China Postdoctoral Science Foundation(2021M692620)+1 种基金the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(2021-QZ-01)the Key Project of Natural Science Fund of Shaanxi Province(2023-JC-ZD-06)。
文摘The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts.
基金We acknowledge support from the National Key Research and Development Program of China under Grant No.2021YFB3501503from the National Natural Science Foundation of China under Grant Nos.12004048 and U1930401.
文摘We investigate the electronic properties of stableβ-UH3 under high pressure up to 75 GPa within the first-principles DFT+U formalism with pressure-dependent U in a self-consistent calculation,and we find an electronic structure transition at about 20 GPa due to the quantum process of localization and itinerancy for partially filled uranium 5f electrons.The electronic structure transition is examined from four perspectives:magnetization,band structure,density of states,and 5f electron energy.On the basis of the density of states of 5f electrons,we propose an order parameter,namely,the 5f electron energy,to quantify the electronic structure transition under pressure.Analogously to the isostructural transition in 3d systems,β-UH3 retains its magnetic order after the electronic structure transition;however,this is not accompanied by volume collapse at the transition point.Our calculation is helpful for understanding the electronic properties ofβ-UH3 under high pressure.
基金Supported by the National Natural Science Foundation of China under Grant No 11404180the Natural Science Foundation of Heilongjiang Province under Grant Nos F201335,A2015010,and A2015011the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province under Grant No LBH-Q14159
文摘The electronic structures of PF and PF+ are calculated with the high-level configuration interaction method. To improve the precision of calculations, the spin-orbit coupling effect, the scalar relativistic effect, and the Davidson correction(q-Q) are also considered. The spectroscopic parameters of bound states are derived by the electronic structures of PF and PF+, which are in good accordance with the measurements. The transition dipole moments of spin-allowed transitions are evaluated, and the radiative lifetimes of several A S states of PF and PF+ are obtained.
基金Supported by the National Natural Science Foundation of China (No. 20673019)
文摘We report a theoretical study on the electronic structures of O2 chemisorbed on a(8,0) SWNT with different oxygen contents of 6.25,12.5 and 25%,respectively.On the basis of DFT calculations,we find that eight O2 molecules chemisorbed on the(8,0) SWNT aligned in the middle row of the circumference of the tube in proportional spacing way,is seen to become metallic,and a significant increase in conductivity is expected.There are different electronic structures of the functionalized systems related to different oxygen contents or O2 molecules' chemisorbed positions.
基金Foundation ite m:Project supported by R.A.Welch Foundation
文摘Seven new rare earth transition metal sulfates were synthesized by hydrothermal reactions under conditions slightly above the critical point of water. Their crystal structures were determined from single crystal X-ray data. The compositions of the new compounds can be represented by two general formulae : REM (OH) 3 (SO4) and RE2M (OH) 3 (SO4) 2F (H2O) with RE = Gd, Tb, Dy ; M = Ni, Cu. Three different crystal structure types were found for the formula REM (OH) 3 (SO4). The structures of the new compounds all feature infinite chains of REOn coordination polyhedra, which are connected to chains of CuO6 or NiO6 octabedra. The limited size range of the rare earth cations observed in these compounds is most likely because of interactions between the octabedral chains and the chains of REOn polyhedra. The new compounds are closely related to the known yttrium transition metal sulfates.
基金Supported by the NNSFC(No.21373223)Chunmiao project of Haixi Institute of Chinese Academy of Sciences(CMZX-2014-001)
文摘With transition metal complex, a discrete cuprous iodide compound, namely, [Ni(phen)3]2Cu6I10(1, phen = 1,10-phenanthroline) has been solvothermally synthesized and structurally characterized. Single-crystal X-ray diffraction studies revealed that compound 1 crystallizes in triclinic space group P1(No. 2) with a = 11.2694(2), b = 12.3699(3), c = 15.0387(3) ?, α = 102.840(2), β = 105.215(2), γ = 96.388(2)°, V = 1940.04(7) ^3, Z = 1, Dc = 2.438 g·cm^-3, F(000) = 1324, R = 0.0256 and w R = 0.0555(I 〉 2σ(I)). Compound 1 features a discrete anionic moiety of [Cu6I10]^4- charge-balanced by two metal complexes of [Ni(phen)3]2+. The optical absorption edge of compound 1 was estimated to be 2.24 eV. Interestingly, nearly 95% of contaminant(crystal violet aqueous solution(CV), 50 m L, 1.0 × 10^-5 M) could be decolorized after exposure to visible light within 30 min, illustrating an impressive photocatalytic activity of compound 1. The thermal stability of 1 has also been studied.
文摘Since the correspondence between the impurity and its energy levels within the bands is not exactly known, it is difficult to assign the impurity according to its levels. In this work, several metallic impurities were intentionally doped into samples, then their energy levels were determined by DLTS.
基金supported by Qianjiang Talent Project of Zhejiang Province of China (Grant No 2007R10028)the Science Foundation of Zhejiang Sci-Tech University (ZSTU) in China (Grant No 0613271-Y)Science Foundation of Zhejiang Province of China(Grant No Y407188)
文摘In this paper first-principles calculations of Ni(111)/α-Al2O3(0001) interfaces have been performed, and are compared with the preceding results of the Cu (111)/α-Al2O3(0001) interface [2004 Phil. Mag. Left. 84 425]. The AI- terminated and O-terminated interfaces have quite different adhesion mechanisms, which are similar to the Cu(111)/α Al2O3(0001) interface. For the O-terminated interface, the adhesion is caused by the strong O-2p/Ni-3d orbital hybridization and ionic interactions. On the other hand, the adhesion nature of the Al-terminated interface is the image-like electrostatic and Ni-Al hybridization interactions, the latter is substantial and cannot be neglected. Charge transfer occurs from Al2O3 to Ni, which is opposite to that in the O=terminated interface. The charge transfer direction for the Al-terminated and O-terminated Ni(111)/α-A1203(0001) interfaces is similar to that in the corresponding Cu(111)/α- Al2O3(0001) interface, but there exist the larger charge transfer quantity and consequent stronger adhesion nature, respectively.
基金National Natural Science Foundation of China(Grant Nos.21673296 and 11664038)the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China(Grant No.2019D01C038).
文摘The diamond nanothread(DNT), a new one-dimensional(1 D) full carbon sp3 structure that has been successfully synthesized recently, has attracted widespread attention in the carbon community. By using the first-principles calculation method of density functional theory(DFT), we have studied the effects of 3 d transition metal(TM) atomic doping on the electronic and magnetic properties of DNT. The results show that the spin-polarized semiconductor characteristics are achieved by doping Sc, V, Cr, Mn, and Co atoms in the DNT system. The magnetic moment ranges from 1.00 μB to 3.00 μB and the band gap value is from 0.35 e V to 2.54 e V. The Fe-doped DNT system exhibits spin-metallic state with a magnetic moment of 2.58 μB, while the Ti and Ni-doped DNT systems are nonmagnetic semiconductors. These results indicate that the 3 d TM atoms doping can modulate the electronic and magnetic properties of 1 D-DNT effectively, and the TM-doped DNT systems have potential applications in the fields of electronics, optoelectronics, and spintronics.
基金Supported by the National Basic Research Program of China under Grant Nos 2012CB921400,2011CB921802 and 2011CBA00112
文摘Employing the angle-resolved photoemission spectroscopy, we study the electronic structure of TaFe1.23Te3, a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional (2D) Fermi surface is observed, with sizable inter-ladder hopping. Moreover, instead of observing an energy gap at the Fermi surface in the antiferromagnetic state, we observe the shifts of various bands. Combining these observations with density-functional-theory calculations, we propose that the large scale reconstruction of the electronic structure, caused by the interactions between the coexisting itinerant electrons and local moments, is most likely the driving force of the magnetic transition. Thus TaFe1.23Te3 serves as a simpler platform that contains similar ingredients to the parent compounds of iron-based superconductors.
基金Project supported by the Natural Science Foundation of the Chinese Academy of Sciences(Grant No.H91G750Y21)
文摘The in situ valence band photoemission spectrum (PES) and X-ray absorption spectrum (XAS) at V LⅡ-LⅢ edges of the VO2 thin film, which is prepared by pulsed laser deposition, are measured across the metal–insulator transition (MIT) temperature (TMIT=67 ℃). The spectra show evidence for changes in the electronic structure depending on temperature. Across the TMIT, pure V 3d characteristic d‖ and O 2p-V 3d hybridization characteristic πpd, σpd bands vary in binding energy position and density of state distributions. The XAS reveals a temperature-dependent reversible energy shift at the V LⅢ-edge. The PES and XAS results imply a synergetic energy position shift of occupied valence bands and unoccupied conduction band states across the phase transition. A joint inspection of the PES and XAS results shows that the MIT is not a one-step process, instead it is a process in which a semiconductor phase appears as an intermediate state. The final metallic phase from insulating state is reached through insulator–semiconductor, semiconductor–metal processes, and vice versa. The conventional MIT at around the TMIT=67 ℃ is actually a semiconductor–insulator transformation point.
文摘NdNiO_(3) is a typical correlated material with temperature-driven metal–insulator transition. Resolving the local electronic phase is crucial in understanding the driving mechanism behind the phase transition. Here we present a nano-infrared study of the metal–insulator transition in NdNiO_(3) films by a cryogenic scanning near-field optical microscope. The NdNiO_(3) films undergo a continuous transition without phase coexistence. The nano-infrared signal shows significant temperature dependence and a hysteresis loop. Stripe-like modulation of the optical conductivity is formed in the films and can be attributed to the epitaxial strain. These results provide valuable evidence to understand the coupled electronic and structural transformations in NdNiO_(3) films at the nano-scale.
基金Project supported by the Qianjiang Talent Project of Zhejiang Province, China (Grant No 2007R10028)the National Natural Science Foundation of China (Grant No 50802089)+2 种基金the Opening Project of State Key Laboratory of High Performance Ceramicsand Superfine Microstructure, China (Grant No SKL200805SIC)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China (Grant No [2008] 890)Natural Science Foundation of Zhejiang Province,China (Grant No Y407188)
文摘The electronic structure and magnetism of eskolaite are studied by using first-principles calculations where the on-site Coulomb interaction and the exchange interaction are taken into account and the LSDA+U method is used. The calculated energies of magnetic configurations are very well fitted by the Heisenberg Hamiltonian with interactions in five neighbour shells; interaction with two nearest neighbours is found to be dominant. The Neel temperature is calculated in the spin-3/2 pair-cluster approximation. It is found that the measurements are in good agreement with the calculations of lattice parameters, density of states, band gap, local magnetic moment, and the Neel temperature for the values of U and J that are close to those obtained within the constrained occupation method. The band gap is of the Mott-Hubbard type.
基金supported by the National Natural Science Foundation of China (Grant No. 12304072)Program for Science and Technology Innovation Team in Zhejiang (Grant No. 2021R01004)+1 种基金Natural Science Foundation of Ningbo(Grant No. 2021J121)supported by the User Experiment Assist System of Shanghai Synchrotron Radiation Facility (SSRF)。
文摘Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) under high pressure by electrical resistance investigations,synchrotron x-ray diffraction,Raman scattering and theoretical calculations.Up to 70 GPa,an unusual metal-semiconductor-metal transition occurs.Our first-principles calculations suggest that the observed anti-Wilson transition from metal to semiconductor at 17 GPa is due to the electron localization induced by the intercalated Ti atoms.This electron localization is attributed to the strengthened coupling between the doped Ti atoms and S atoms,and the Anderson localization arising from the disordered intercalation.At pressures exceeding 30.5 GPa,the doped TiS_(2) undergoes a re-metallization transition initiated by a crystal structure phase transition.We assign the most probable space group as P2_(1)2_(1)2_(1).Our findings suggest that materials probably will eventually undergo the Wilson transition when subjected to sufficient pressure.
文摘We investigated the structural evolution and elecfronic properties of ConC3-/0 and ConC4-/0 (n=1-4) clusters by using mass-selected photoelectron spectroscopy and density functional theory calculations. The adiabatic and vertical detachment energies of CO1-4C3- and COl-4C4- were obtained from their photoelectron spectra. By comparing the theoretical results with the experimental data, the global minimum structures were determined. The results indicate that the carbon atoms of ConC3-/0 and ConC4-/0 (n=1-4) are separated from each other gradually with increasing number of cobalt atoms but a C2 unit still remains at n=4. It is interesting that the Co2C3- and Co2C4- anions have planar structures whereas the neutral Co2C3 and Co2C4 have linear structures with the Co atoms at two ends. The Co3C3- anion has a planar structure with a Co2C2 four-membered ring and a Co3C four-membered ring sharing a Co-Co bond, while the neutral Co3C3 is a three-dimensional structure with a C2 unit and a C atom connecting to two faces of the Co3 triangle.
基金Project supported by the Construct Program of the Key Discipline in Hunan Province,ChinaAid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic properties of twodimensional transition metal dichalcogenides(TMDCs) with the formula of MX2(M = Mo, W; X = O, S, Se, Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO2 and WO2. When the monolayers are stacked into a bilayer, the reduced indirect band gaps are found except for bilayer WTe2, in which the direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to that of graphene, which promises possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and opt B88-vd W in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible.
基金supported by the National Natural Science Foundation of China(No.21271129)
文摘A new homochiral ligand,(R)-2-(4-pyridyl)-4,5-dihydrothiazole-4-carboxylic acid(HL^R), has been synthesized. Two complexes, [ZnL2^R(H2O)2]·H2O(1) and [MnL2^R(H2O)2]?H2O(2) have been prepared by the reactions of Zn(Ⅱ) and Mn(Ⅱ) ions with the ligand HLR, and characterized by single-crystal X-ray diffraction analysis and fluorescence. Complexes 1 and 2 are isomorphs, and both of the Zn(Ⅱ) and Mn(Ⅱ) centers in 1 and 2 are six-coordinated by the two NO units of two ligands and two water oxygen atoms, showing distorted octahedral coordination geometry. Complexes 1 and 2 show fluorescent properties in the solid state at room temperature.
基金Supported by the National Natural Science Foundation of China(No.21576112)Natural Science Foundation of Jilin Province(20150623024TC-19,20170520147JH)the Science and Technology Development Plan of Siping City(2015049)
文摘Six new transition metal complexes, [Zn(HBTC)(PYTPY)]n·n PYTPY(1), [Cu(HBTC)(PYTPY)]n·n PYTPY(2), [Co(HBTC)(PYTPY)]n·n DMF(3), [Mn(HBTC)(PYTPY)]n·n DMF(4), [Cd(HBTC)(PYTPY)(H2O)]n·2nH2O(5), and [Co(HBTC)(PYTPY)(H2O)2](6),(H3BTC = 1,3,5-benzenetricarboxylic acid, PYTPY = 4'-(4-pyridyl)-2,2':6',2''-terpyridine, DMF = N,N?-dimethylformamide), have been synthesized and characterized by elemental analysis, IR and X-ray single-crystal diffraction. Complexes 1~5 all feature one-dimensional chain structures, and complex 6 exhibits a zero-dimensional structure. Complexes 1~5 present three-dimensional(3D) supramolecular frameworks via π-π stacking interactions, whenas 6 has also a 3D supramolecular structure assembled by hydrogen bonding. Meanwhile, complexes 1 ~ 6 exhibit the thermal stabilities and photoluminescent properties.
基金Supported by NNSFC (21071024)the Chizhou University (2010RC005)the Materials Key Subject of Chizhou University (2011XK04)
文摘Two new coordination polymers,[Co(BIPA)(bpp)](1) and [Zn(BIPA)(bpp)(H2O)](2)(H2BIPA = 5-bromoisophthalic acid,bpp = 1,3-di(4-pyridyl)propane) have been synthesized via hydrothermal reactions.The two compounds were characterized by elemental analysis,IR spectra,TG analysis and single-crystal X-ray determination.Compound 1 crystallizes in triclinic,space group P1 with a = 9.0316(13),b = 10.1179(14),c = 11.8884(17) ,α = 68.022(2),β = 84.749(2),γ = 77.791(2)°,V = 984.5(2) 3,Z = 2,C21H17BrN2O4Co,Mr = 500.21,Dc = 1.687 g.cm-3,μ = 2.932 mm-1,S = 0.981,F(000) = 502,R = 0.0440 and wR = 0.1357 for 3773 observed reflections with I 2σ(I).Compound 2 crystallizes in the monoclinic system,space group P21/c with a = 7.8466(10),b = 27.483(4),c = 9.6583(13) ,β = 96.663(3)°,V = 2068.8(5) 3,Z = 4,C21H19BrN2O5Zn,Mr = 524.66,Dc = 1.685 g.cm-3,μ = 3.155 mm-1,S = 0.969,F(000) = 1056,R = 0.0441 and wR = 0.0517 for 4058 observed reflections with I 2σ(I).The two compounds are constructed from the BIPA2-and bpp ligands but they exhibit different kinds of one-dimensional chain structures.In 1,the chains are composed of the Co(Ⅱ) ions and BIPA2-ligands,and the chains are further extended into a 2D framework structure by π...π interactions of the benzene rings from the BIPA2-ligands between the adjacent chains.In 2,the chains are made up of Zn(Ⅱ) ions and BIPA2-ligands through another fashion,and the chains are further linked via hydrogen bonding interactions to yield a two-dimensional supramolecular layer structure.Furthermore,the bpp ligand features two kinds of different coordination modes in the two compounds.
文摘RE 3Cu 3Sb 4(RE=Nd, Sm, Tb, Dy, Ho) was synthesized by arc melting method and their crystal structures were characterized by powder X ray method. The compounds crystallize in cubic system, Y 3Au 3Sb 4 type, space group I43d (No.220), Pearson code cI40. The unit cell parameters are: Nd 3Cu 3Sb 4: a =0 96749(1) nm, V =0 90561(3) nm 3; Sm 3Cu 3Sb 4: a =0 96145(1) nm, V =0 88875(3) nm 3; Tb 3Cu 3Sb 4: a =0 95362(1) nm, V =0 86721(3) nm 3; Dy 3Cu 3Sb 4: a =0 95088(1) nm, V =0 85975(3) nm 3; Ho 3Cu 3Sb 4: a =0 9488(2) nm, V =0 8541(5) nm 3; Z =4. The structures are characterized by covalent bonded Cu Sb tetrahedra which form three dimensional networks by sharing corners. The rare earth atoms are distributed in the cages. The formula with the charge balance can be written as RE 3+ 3Cu 1+ 3Sb 3- 4 which are metallic Zintl phases having the weak metallic conductivity. The bonds have typical transitional features. General atomic coordination environment rules are followed. The unit cell parameters show the lanthanide contraction.