We prove that for a compact Finsler manifold M with nonnegative weighted Ricci curvature,if its first closed(resp.Neumann)eigenvalue of Finsler-Laplacian attains the sharp lower bound,then M is isometric to a circle(r...We prove that for a compact Finsler manifold M with nonnegative weighted Ricci curvature,if its first closed(resp.Neumann)eigenvalue of Finsler-Laplacian attains the sharp lower bound,then M is isometric to a circle(resp.a segment).Moreover,a lower bound of the first eigenvalue of Finsler-Laplacian with Dirichlet boundary condition is also estimated.These generalize the corresponding results in recent literature.展开更多
This paper proves that the first eigenfunctions of the Finsler p-Lapalcian are C^(1,α). Using a gradient comparison theorem and one-dimensional model, we obtain the sharp lower bound of the first Neumann and closed e...This paper proves that the first eigenfunctions of the Finsler p-Lapalcian are C^(1,α). Using a gradient comparison theorem and one-dimensional model, we obtain the sharp lower bound of the first Neumann and closed eigenvalue of the p-Laplacian on a compact Finsler manifold with nonnegative weighted Ricci curvature,on which a lower bound of the first Dirichlet eigenvalue of the p-Laplacian is also obtained.展开更多
Cheng-type inequality, Cheeger-type inequality and Faber-Krahn-type inequality are generalized to Finsler manifolds. For a compact Finsler manifold with the weighted Ricci curvature bounded from below by a negative co...Cheng-type inequality, Cheeger-type inequality and Faber-Krahn-type inequality are generalized to Finsler manifolds. For a compact Finsler manifold with the weighted Ricci curvature bounded from below by a negative constant, Li-Yau's estimation of the first eigenvalue is also given.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11171253)the Natural Science Foundation of Ministry of Education of Anhui Province(Grant No.KJ2012B197)
文摘We prove that for a compact Finsler manifold M with nonnegative weighted Ricci curvature,if its first closed(resp.Neumann)eigenvalue of Finsler-Laplacian attains the sharp lower bound,then M is isometric to a circle(resp.a segment).Moreover,a lower bound of the first eigenvalue of Finsler-Laplacian with Dirichlet boundary condition is also estimated.These generalize the corresponding results in recent literature.
基金supported by National Natural Science Foundation of China (Grant No. 11471246)Natural Science Foundation of Higher Education in Anhui Province (Grant No. KJ2014A257)
文摘This paper proves that the first eigenfunctions of the Finsler p-Lapalcian are C^(1,α). Using a gradient comparison theorem and one-dimensional model, we obtain the sharp lower bound of the first Neumann and closed eigenvalue of the p-Laplacian on a compact Finsler manifold with nonnegative weighted Ricci curvature,on which a lower bound of the first Dirichlet eigenvalue of the p-Laplacian is also obtained.
基金supported by the National Natural Science Foundation of China(Nos.11471246,11171253)the Natural Science Foundation of the Anhui Higher Education Institutions(No.KJ2014A257)
文摘Cheng-type inequality, Cheeger-type inequality and Faber-Krahn-type inequality are generalized to Finsler manifolds. For a compact Finsler manifold with the weighted Ricci curvature bounded from below by a negative constant, Li-Yau's estimation of the first eigenvalue is also given.