This editorial examines a recent study that used radiomics based on computed tomography(CT)to predict the expression of the fibroblast-related gene enhancer of zeste homolog 2(EZH2)and its correlation with the surviva...This editorial examines a recent study that used radiomics based on computed tomography(CT)to predict the expression of the fibroblast-related gene enhancer of zeste homolog 2(EZH2)and its correlation with the survival of patients with hepatocellular carcinoma(HCC).By integrating radiomics with molecular analysis,the study presented a strategy for accurately predicting the expression of EZH2 from CT scans.The findings demonstrated a strong link between the radiomics model,EZH2 expression,and patient prognosis.This noninvasive approach provides valuable insights into the therapeutic management of HCC.展开更多
To provide an insight into the molecular basis of heterosis, differential display of mRNA was used to analyze the difference of gene expression between wheat (Triticum aestivum L.) heterotic hybrid A, nonheterotic hyb...To provide an insight into the molecular basis of heterosis, differential display of mRNA was used to analyze the difference of gene expression between wheat (Triticum aestivum L.) heterotic hybrid A, nonheterotic hybrid B and their parental inbreds in the primary roots. By using 5′ end random primers in combination with three one-base-anchored primers, it was found that 22.5% and 22.9% of 877 total displayed cDNAs were differentially expressed between hybrid A, B and their parents, respectively. Both quantitative and qualitative differences in gene expression between hybrids and their parental inbreds were obvious, indicating that the patterns of gene expression in hybrids alter significantly as compared to their corresponding parents. On the other hand, by using MADS-box gene specific 5′ end primer for DDRT-PCR, we found that nearly all of the displayed cDNA fragments were polymorphic between hybrids and their parents, and major difference occurred in qualitative level, in which hybrid specific-expressed and silenced genes are the major two patterns, suggesting that MADS-box gene may be important for manifestation of differential gene expression and wheat heterosis. In comparison with our previous results by using seedling leaves, it is indicated that differential gene expression between hybrids and parents is dependent on the tissues tested, and more differentially expressed genes were observed in the primary roots than in the seedling leaves. Therefore, it is concluded that the expressions of both randomly displayed cDNAs and transcription factor genes, such as MADS-box, alter significantly between hybrids and their parents, which might be responsible for the observed heterosis.展开更多
MicroRNAs (miRNAs) are endogenous -22 nucleofide-long noncoding RNAs. In this study, to investigate miRNA expression profiles and their functions in mammary gland development, we have used microarray as well as qRT-...MicroRNAs (miRNAs) are endogenous -22 nucleofide-long noncoding RNAs. In this study, to investigate miRNA expression profiles and their functions in mammary gland development, we have used microarray as well as qRT-PCR, to analyze the miRNA expression changes along the murine mammary cycle during pregnancy, particularly on transition from pregnancy to lactation. It shows that every developmental stage of the mammary gland has its own mjRNA expression pattern. Compared with virgin and involution, some miRNAs such as miR-138 and miR-431 are downregulated, whereas, some miRNAs such as miR-133 and miR-133a-133b are upregulated during pregnancy and lactation. These results indicate that miRNAs are functionally involved in mammary gland development.展开更多
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However...Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.展开更多
Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotto...Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotton(Gossypium spp.).Here,we identified 40 ABC1Ks in upland cotton(Gossypium hirsutum L.)and found that the Gh ABC1Ks were unevenly distributed across 17 chromosomes.The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.The qRT-PCR results revealed that most Gh ABC1Ks were upregulated by exposure to different stresses.Gh ABC1K2-A05 and Gh ABC1K12-A07 expression levels were upregulated by at least three stress treatments.These genes were further functionally characterized by virus-induced gene silencing(VIGS).Compared with the controls,the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde(MDA)contents,lower catalase(CAT),peroxidase(POD)and superoxide dismutase(SOD)activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.In addition,the expression levels of six stress marker genes(Gh DREB2A,Gh SOS1,Gh CIPK6,Gh SOS2,Gh WRKY33,and Gh RD29A)were significantly downregulated after stress in the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced lines.The results indicate that knockdown of Gh ABC1K2-A05 and Gh ABC1K12-A07 make cotton more sensitive to salt and PEG stress.These findings can provide valuable information for intensive studies of Gh ABC1Ks in the responses and resistance of cotton to abiotic stresses.展开更多
BACKGROUND Bevacizumab,an anti-vascular endothelial growth factor(VEGF)monoclonal antibody,inhibits angiogenesis and reduces tumor growth.Serum VEGF-C,lactate dehydrogenase,and inflammatory markers have been reported ...BACKGROUND Bevacizumab,an anti-vascular endothelial growth factor(VEGF)monoclonal antibody,inhibits angiogenesis and reduces tumor growth.Serum VEGF-C,lactate dehydrogenase,and inflammatory markers have been reported as predictive markers related to bevacizumab treatment.Programmed cell death ligand 1(PD-L1)could act upon VEGF receptor 2 to induce cancer cell angiogenesis and metastasis.AIM To investigate the efficacy of bevacizumab-containing chemotherapy in patients with metastatic colorectal cancer(CRC)according to the expression of PD-L1.METHODS This analysis included CRC patients who received bevacizumab plus FOLFOX or FOLFIRI as first-line therapy between June 24,2014 and February 28,2022,at Samsung Medical Center(Seoul,South Korea).Analysis of patient data included evaluation of PD-L1 expression by the combined positive score(CPS).We analyzed the efficacy of bevacizumab according to PD-L1 expression status in patients with CRC.RESULTS A total of 124 patients was included in this analysis.Almost all patients were treated with bevacizumab plus FOLFIRI or FOLFOX as the first-line chemotherapy.While 77%of patients received FOLFOX,23%received FOLFIRI as backbone first-line chemotherapy.The numbers of patients with a PD-L1 CPS of 1 or more,5 or more,or 10 or more were 105(85%),64(52%),and 32(26%),respectively.The results showed no significant difference in progression-free survival(PFS)and overall survival(OS)with bevacizumab treatment between patients with PDL1 CPS less than 1 and those with PD-L1 CPS of 1 or more(PD-L1<1%vs PD-L1≥1%;PFS:P=0.93,OS:P=0.33),between patients with PD-L1 CPS less than 5 and of 5 or more(PD-L1<5%vs PD-L1≥5%;PFS:P=0.409,OS:P=0.746),and between patients with PD-L1 CPS less than 10 and of 10 or more(PD-L1<10%vs PD-L1≥10%;PFS:P=0.529,OS:P=0.568).CONCLUSION Chemotherapy containing bevacizumab can be considered as first-line therapy in metastatic CRC irrespective of PD-L1 expression.展开更多
The study aims to clarify the differential gene expression between cotton hybrids and their parents in order to better understand the molecular basis of cotton heterosis. The research focused on cotton heterotic and l...The study aims to clarify the differential gene expression between cotton hybrids and their parents in order to better understand the molecular basis of cotton heterosis. The research focused on cotton heterotic and lower heterotic hybrids and their parents during the four crucial stages, which were analyzed using a differential display technique. The results indicated that there were both quantitative and qualitative differences in gene expression amongst them. The quantitative differences include over- and under-expression of parental genes and the dominant expression of highly-expressed parental genes in hybrids. In contrast, the qualitative differences are the following: (i) Bands were observed in both parents but not in the F1 hybrid (BPnF1); (ii) bands occurred in either of the parents but not in the F1 hybrid (UPnF1); (iii) bands presented only in the F1 hybrid but not in either of the parents (UF1nP); and (iv) bands were detected in either of the parents and the F1 hybrid (UPF1). Overall, the major differences of gene expression occurred in the qualitative level and four related differential patterns were observed. Furthermore, the amount of differential patterns during the flowering stage was relatively higher than those of other stages. At this juncture, both the amount of hybrid-specific expression patterns at flowering stage and the silenced expression patterns at boll-forming stage in highly heterotic hybrids were found higher than those in the lower heterotic ones. It was concluded that significant differences of gene expression in leaves were present between cotton hybrid and its parents during the whole growing stages. Hence, these differences might be responsible for the observed cotton heterosis.展开更多
INTRODUCTIONAdenocarcinomas of the cardia are the lesionsarising from the proximal stomach or within 3 cm ofthe gastroesophageal junction.These cancerstended to be advanced at the time of presentation,usually with poo...INTRODUCTIONAdenocarcinomas of the cardia are the lesionsarising from the proximal stomach or within 3 cm ofthe gastroesophageal junction.These cancerstended to be advanced at the time of presentation,usually with poor prognosis.In recent decade,the incidence of adenocarcinoma of gastric eardiaand esophagus are increasing steadily,while therehas been a decrease in the proportion of the cancersarising from the distal stomach.The展开更多
Zostera marina, a monocotyledonous angiosperm, is one of the most important seagrass species. To inves- tigate the salt-tolerance mechanism and discover salt-tolerant genes in Z. marina, a cDNA library was con- struct...Zostera marina, a monocotyledonous angiosperm, is one of the most important seagrass species. To inves- tigate the salt-tolerance mechanism and discover salt-tolerant genes in Z. marina, a cDNA library was con- structed. Single-pass sequencing of the 5' ends of 4 081 clones yielded 4 002 high quality expressed sequence tags (ESTs), which were assembled into 241 contigs and 1 673 singletons, representing 1 914 unigenes. The average length of the ESTs was 582 bp, with sizes ranging from 100-1 500 bp. Basic Local Alignment Search Tool (BLASTX) analysis revealed that 1 664 unigenes had significant homology to known genes in the Na- tional Center for Biotechnology Information (NCBI) non-redundant (nr) database (E-value≤5-10). Among them, the two most abundant genes encoded metallothionein (157 ESTs) and chlorophyll a/b-binding pro- tein (38 ESTs), accounting for 7.1% and 1.7% of the total ESTs, respectively. Using Kyoto Encyclopedia of Genes and Genomes (KEGG), 1 462 unigenes were assigned to 1 161 pathways (E-value≤5-10). A total of 938 unigenes were assigned Gene Ontology (GO) terms based on the GO hierarchy analysis, and InterProScan searches recognized 1 003 InterPro families. Three genes for metallothionein in Z. marina that belonged to Class II was identified. Results of this study will improve understanding of the molecular mechanisms of saline tolerance in Z. marina.展开更多
Innexin proteins are a class of transmembrane proteins existing in invertebrates and they have diverse biological functions. The innexin protein Sp-inx2 has been demonstrated to play roles in immune response and promo...Innexin proteins are a class of transmembrane proteins existing in invertebrates and they have diverse biological functions. The innexin protein Sp-inx2 has been demonstrated to play roles in immune response and promotion of cell apoptosis in the mud crab Scylla paramamosain . One novel innexin gene, named as Sp-inx3 was characterized from S. paramamosin in this study, with an open reading frame of 1 101 bp encoding 367 amino acid residues. Multiple sequence alignment revealed that the Sp-inx3 is highly homologous with innexin3 of Cancer boredis and Homorus americanus . Quantitative real-time PCR (qPCR) and the western blotting results revealed that Sp-inx3 gene was expressed predominantly in the eyestalk, brain, and thoracic ganglion mass in both female and male crabs. The immunohistochemistry assay (IHC) also showed the widespread and intense immunoreactivity of Sp-inx3 in the brain and thoracic ganglion mass. Sp-inx3 mRNA transcription profi les exhibited signifi cantly higher expression from the embryo1 to embryo4 period and low level of expression at the prehatching period and zoea I larva period of S . paramamosain . These results indicate that the Sp-inx3 may play an important role in the nervous system and early embryonic development of S . paramamosain.展开更多
The H19 gene, which is imprinted with preferential expression from the maternal allele, was one of the first identified imprinting genes in mammals. Recent studies revealed that correct imprinting of the H19 gene play...The H19 gene, which is imprinted with preferential expression from the maternal allele, was one of the first identified imprinting genes in mammals. Recent studies revealed that correct imprinting of the H19 gene plays a vital role in human spermatogenesis. To investigate whether imprinting defects were associated with the hybrid sterility of male cattle-yak, the methylation patterns of the H19 imprinting control region (ICR) and H19 mRNA expression in the testes of cattle-yak, yak, and cattle were examined. The results showed that the 3rd CCCTC-binding factor (CTCF) site of the H19 ICR was significantly hypomethylated in the testes of cattle-yak compared with yak or cattle. As expected, H19 was expressed at a significantly higher level in cattle-yak than in yak or cattle. These results suggest that imprinting defects of the CTCF- binding site in the HI9 ICR were possibly associated with disturbed spermatogenesis of male cattle-yak. Thus, we propose that disorders in H19 imprinting, resulting in an increased H19 mRNA expression, might contribute to the sterility of F1 male hybrids between cattle and yak.展开更多
To improve the understanding of molecular mechanisms of anther and/or pollen development in Chili pepper, in the present study, fulllength cDNA and DNA sequences of the pollen development-related gene CaMF5 were obtai...To improve the understanding of molecular mechanisms of anther and/or pollen development in Chili pepper, in the present study, fulllength cDNA and DNA sequences of the pollen development-related gene CaMF5 were obtained from the anthers of a Capsicum annuum nuclear male-fertile line. Sequence analysis indicated that the full length of CaMF5 was 747 bp, containing a maximum opening reading frame of 447 bp.Amino acid sequence alignment and phylogenetic analysis revealed that CaMF5 shared approximately 37%–77% homology with a series of uncharacterized or hypothetical proteins and late embryogenesis abundant(LEA) proteins from other plants. However, no LEA structural domain was detected in CaMF5, which indicated that it might be a new type of LEA gene. CaMF5 was only expressed in flower buds at stages 7 and 8 and in open flowers of the male-fertile line, whereas it exhibited no expression in any examined organs of the male-sterile line. In addition, CaMF5 showed the highest transcript abundance in the anthers of the male-fertile line, with no expression being detected in any other examined organs, such as the sepals, petals, pistils, roots, stems, or leaves. Taken together, our results suggest that CaMF5 is an anther-specific gene that might encode a new type of LEA protein related to anther and/or pollen development in C. annuum.展开更多
Tea is an important non-alcoholic beverage worldwide.Tea quality is determined by numerous secondary metabolites in harvested tea leaves,including tea polyphenols,theanine,caffeine,and ascorbic acid(AsA).AsA metabolis...Tea is an important non-alcoholic beverage worldwide.Tea quality is determined by numerous secondary metabolites in harvested tea leaves,including tea polyphenols,theanine,caffeine,and ascorbic acid(AsA).AsA metabolism in harvested tea leaves is affected by storage and transportation temperature.However,the molecular mechanisms underlying AsA metabolism in harvested tea leaves exposed to different storage and transportation temperature conditions remain unclear.Here we performed RP-HPLC to detect dynamic changes in AsA content in tea leaves subjected to high-(38°C),low-(4°C),or room-temperature(25°C)treatments.The AsA distribution and levels in the treated tea leaves were analyzed using cytological–anatomical characterization methods.The differentially expressed CsAPX1 and CsDHAR2 proteins,which are involved in the AsA recycling pathway,were identified from the corresponding proteomic data using iTRAQ.We also analyzed the expression profiles of 18 genes involved in AsA metabolism,including CsAPX1 and CsDHAR2.AsA was mainly distributed in tea leaf mesophyll cells.High-and low-temperature treatments upregulated the CsAPX1 and CsDHAR2 proteins and induced CsAPX and CsDHAR2 gene expression.These results indicated that the CsAPX1 and CsDHAR2 proteins might have critical roles in AsA recycling in tea leaves.Our results provide a foundation for the in-depth investigation of AsA metabolism in tea leaves during storage and transportation,and they will promote better tea flavor in tea production.展开更多
The effects of over-expression of testis-specific expressed gene 1(TSEG-1) on the viability and apoptosis of cultured spermatogonial GC-1spg cells were investigated, and the immortal spermatogonial cell line GC-1spg...The effects of over-expression of testis-specific expressed gene 1(TSEG-1) on the viability and apoptosis of cultured spermatogonial GC-1spg cells were investigated, and the immortal spermatogonial cell line GC-1spg(CRL-2053?) was obtained as the cell model in order to explore the function of TSEG-1. We transfected the eukaryotic vector of TSEG-1, named as pEGFP-TSEG-1 into cultured spermatogonial GC-1spg cells. Over-expression of TSEG-1 inhibited the proliferation of GC-1spg cells, and arrested cell cycle slightly at G0/G1 phase. Transfection of TSEG-1 attenuated the transcript levels of Ki-67, PCNA and cyclin D1. In addition, over-expression of TSEG-1 induced early and late apoptosis, and reduced the mitochondrial membrane potential of GC-1spg cells. Moreover, transfection of TSEG-1 significantly enhanced the ratio of Bax/Bcl-2 and transcript levels of caspase 9, and decreased the expression of Fas and caspase 8 in GC-1spg cells. These results indicated over-expression of TSEG-1 suppresses the proliferation and induces the apoptosis of GC-1spg cells, which establishes a basis for further study on the function of TSEG-1.展开更多
In order to detect the molecular mechanism of heterosis in pigs, the mRNA differential display technique was performed to investigate the differences of gene expression in the Longissimus dorsi tissue from Meishan, ...In order to detect the molecular mechanism of heterosis in pigs, the mRNA differential display technique was performed to investigate the differences of gene expression in the Longissimus dorsi tissue from Meishan, Meishan × Large White hybrid and Large White pigs with nine 3'-end anchored primers in combination with ten 5'-end arbitrary primers and nearly 3000 reproducible bands were examined. One novel expressed sequence tag (EST4, GenBank accession number: AY553914) that was differentially expressed in Meishan, Meishan× Large White hybrid and Large White pigs was isolated from the Longissimus dorsi muscle tissue and identified through semi-quantitative RT-PCR. BLAST analysis revealed that the 350 bp long EST (EST4) was not homologous to any of the known porcine genes. Tissue expression profile analyses showed that the EST4 was expressed in most of tissues.LIU Yong-gang, Ph D candidate展开更多
Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeut...Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeutic drugs and targets for diabetes-related sepsis.The research also incorporates traditional physical therapy perspectives,emphasizing the genomic insights gained from exercise therapy in disease management and prevention.Methods:Gene analysis was conducted on the GSE168796 and GSE94717 datasets to identify ER stress-related genes.Gene interactions and immune cell correlations were mapped using GeneCard and STRING databases.A screening of 2,456 compounds from the TCMSP database was performed to identify potential therapeutic agents,with a focus on their docking potential.Techniques such as luciferase reporter gene assay and RNA interference were used to examine the interactions between microRNA-149-5p and MMP9.Results:The study identified 2,006 differentially expressed genes and 616 miRNAs.Key genes like MMP9,TNF-α,and IL1B were linked to an immunosuppressive state.Licorice glycoside E demonstrated high affinity for MMP9,suggesting its potential effectiveness in treating diabetes.The constructed miRNA network highlighted the regulatory roles of MMP9,IL1B,IFNG,and TNF-α.Experimental evidence confirmed the binding of microRNA-149-5p to MMP9,impacting apoptosis in diabetic cells.Conclusion:The findings highlight the regulatory role of microRNA-149-5p in managing MMP9,a crucial gene in diabetes pathophysiology.Licorice glycoside E emerges as a promising treatment option for diabetes,especially targeting MMP9 affected by ER stress.The study also underscores the significance of physical exercise in modulating ER stress pathways in diabetes management,bridging traditional physical therapy and modern scientific understanding.Our study has limitations.It focuses on the microRNA-149-5p-MMP9 network in sepsis,using cell-based methods without animal or clinical trials.Despite strong in vitro findings,in vivo studies are needed to confirm licorice glycoside E’s therapeutic potential and understand the microRNA-149-5p-MMP9 dynamics in real conditions.展开更多
Heterosis plays an important role in crop production and plant evolution. Although heterosis has been widely exploited by plant breeders, the underlying molecular mechanisms are not well understood. We analyzed gene e...Heterosis plays an important role in crop production and plant evolution. Although heterosis has been widely exploited by plant breeders, the underlying molecular mechanisms are not well understood. We analyzed gene expression of the highly heterotic maize hybrid Zhengdan 958 and its parents, Zheng 58 and Chang 7-2 during spikelet and floscule differentiation using the GeneChip Maize Genome Array. Pairwise comparison among Zhengdan 958 and its parents at the two stages of immature ear development identfied 1 089 and 1 352 differentially expressed genes. Gene ontology (GO) functional analysis showed that these genes participate in many functional categories, and those encoding response to stress and transcription factor may play important roles in heterosis. Pathway analysis showed that the differentially expressed genes are involved in various metabolic processes, and those participating in lipid metabolism, signal transduction, transport, and catabolism may contribute to heterosis. A non-additive expression pattern was prevalent in genes that were differentially expressed between the hybrid and its parents during both spikelet and floscule differentiation. Because genes that are differentially expressed in a hybrid and its parents could underlie heterosis, nonadditive expression patterns might contribute to the manifestation of heterosis.展开更多
This study addresses the link between social media use and pro-environmental civic participation considering the moderating effect of social media affordances (public realm) on one hand, and lifestyle behaviors and cl...This study addresses the link between social media use and pro-environmental civic participation considering the moderating effect of social media affordances (public realm) on one hand, and lifestyle behaviors and climate change experiences (personal realm) on the other. We combine communication theory and behavioral models and using a sample of USA individuals (N = 7225) based on the American Trends Panel to predict variations in pro-environmental behavior. We show that social networks rather than information are more effective in predicting pro-environmental behavior. Moreover, a pro-environmental lifestyle as well as climate change experiences at the community level increase the likelihood for pro-environmental participation. However, affordances related to socioeconomic variations generate variations to pro-environmental civic participation. We conclude that in order to capture the depth of pro-environmental civic participation, it is necessary to theoretically and empirically bridge between private and public expressions of pro-environmental awareness.展开更多
AIM: To investigate the molecular pathways involved in human cholangiocarcinogenesis by gene expression profiling. METHODS: Oligonucleotide arrays (Affymetrix U133A) were used to establish a specific gene expression p...AIM: To investigate the molecular pathways involved in human cholangiocarcinogenesis by gene expression profiling. METHODS: Oligonucleotide arrays (Affymetrix U133A) were used to establish a specific gene expression profile of intrahepatic CCC in comparison to corresponding non- malignant liver tissue. To validate the expression values of the most overexpressed genes, RT-PCR experiments were performed. RESULTS: Five hundred and fifty-two statistically differentially expressed genes/ESTs (221 probes significantly up-regulated, 331 probes down-regulated; P < 0.05; fold change > 2; ≥ 70%) were identified. Using these data and two-dimensional cluster analysis,a specific gene expression profile was obtained allowing fast and reproducible differentiation of CCC, which was confirmed by supervised neuronal network modelling. The most consistently overexpressed gene (median fold change 33.5, significantly overexpressed in 100%) encoded osteopontin. Furthermore, an association of various genes with the histopathological grading could be demonstrated. CONCLUSION: A highly specific gene expression profile for intrahepatic CCC was identified, allowing for its fast and reproducible discrimination against non- malignant liver tissue and other liver masses. The most overexpressed gene in intrahepatic CCC was the gene encoding osteopontin. These data may lead to a better understanding of human cholangiocarcinogenesis.展开更多
Arbuscular mycorrhiza (AM) formed between plant roots and fungi is one of the most widespread symbiotic associations in nature. To understand the molecular mechanisms of AM formation, we profiled 30 symbiosis-relate...Arbuscular mycorrhiza (AM) formed between plant roots and fungi is one of the most widespread symbiotic associations in nature. To understand the molecular mechanisms of AM formation, we profiled 30 symbiosis-related genes expressed in Amorpha fruticosa roots colonized by Glomus mosseae and in non-mycorrhizal roots at different stages using differential-display RT-PCR (DDRT-PCR). The expressed genes were confirmed by reverse Northern blotting. Eleven fragments were sequenced and putatively identified by homologous alignment. Of the eleven AM-related genes, five were obtained at the early-stage of plant-fungus interaction and six at the later stage. Three expressed se-quence tag (ESTs) sequences were found to originate from the fungi and eight from the host plant by use of PCR evaluation of gDNA of both plant and fungi. The target genes included an ATP-binding cassette sub-family transporter gene, a transposon-insertion display band, and a photosynthesis-related gene. The results provided information on the molecular mechanisms underlying the development of mycorrhizal sym-biosis between woody plants and AM fungi.展开更多
文摘This editorial examines a recent study that used radiomics based on computed tomography(CT)to predict the expression of the fibroblast-related gene enhancer of zeste homolog 2(EZH2)and its correlation with the survival of patients with hepatocellular carcinoma(HCC).By integrating radiomics with molecular analysis,the study presented a strategy for accurately predicting the expression of EZH2 from CT scans.The findings demonstrated a strong link between the radiomics model,EZH2 expression,and patient prognosis.This noninvasive approach provides valuable insights into the therapeutic management of HCC.
文摘To provide an insight into the molecular basis of heterosis, differential display of mRNA was used to analyze the difference of gene expression between wheat (Triticum aestivum L.) heterotic hybrid A, nonheterotic hybrid B and their parental inbreds in the primary roots. By using 5′ end random primers in combination with three one-base-anchored primers, it was found that 22.5% and 22.9% of 877 total displayed cDNAs were differentially expressed between hybrid A, B and their parents, respectively. Both quantitative and qualitative differences in gene expression between hybrids and their parental inbreds were obvious, indicating that the patterns of gene expression in hybrids alter significantly as compared to their corresponding parents. On the other hand, by using MADS-box gene specific 5′ end primer for DDRT-PCR, we found that nearly all of the displayed cDNA fragments were polymorphic between hybrids and their parents, and major difference occurred in qualitative level, in which hybrid specific-expressed and silenced genes are the major two patterns, suggesting that MADS-box gene may be important for manifestation of differential gene expression and wheat heterosis. In comparison with our previous results by using seedling leaves, it is indicated that differential gene expression between hybrids and parents is dependent on the tissues tested, and more differentially expressed genes were observed in the primary roots than in the seedling leaves. Therefore, it is concluded that the expressions of both randomly displayed cDNAs and transcription factor genes, such as MADS-box, alter significantly between hybrids and their parents, which might be responsible for the observed heterosis.
基金This work was supported by the Doctor Study Project of Heilongjiang Education in 2005.
文摘MicroRNAs (miRNAs) are endogenous -22 nucleofide-long noncoding RNAs. In this study, to investigate miRNA expression profiles and their functions in mammary gland development, we have used microarray as well as qRT-PCR, to analyze the miRNA expression changes along the murine mammary cycle during pregnancy, particularly on transition from pregnancy to lactation. It shows that every developmental stage of the mammary gland has its own mjRNA expression pattern. Compared with virgin and involution, some miRNAs such as miR-138 and miR-431 are downregulated, whereas, some miRNAs such as miR-133 and miR-133a-133b are upregulated during pregnancy and lactation. These results indicate that miRNAs are functionally involved in mammary gland development.
基金financially supported by the National Natural Science Foundation of China,No.81303115,81774042 (both to XC)the Pearl River S&T Nova Program of Guangzhou,No.201806010025 (to XC)+3 种基金the Specialty Program of Guangdong Province Hospital of Chinese Medicine of China,No.YN2018ZD07 (to XC)the Natural Science Foundatior of Guangdong Province of China,No.2023A1515012174 (to JL)the Science and Technology Program of Guangzhou of China,No.20210201 0268 (to XC),20210201 0339 (to JS)Guangdong Provincial Key Laboratory of Research on Emergency in TCM,Nos.2018-75,2019-140 (to JS)
文摘Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.
基金supported by the State Key Laboratory of Aridland Crop Science,Gansu Agricultural University,China(GSCS-2019-10)the National Natural Science Foundation of China(31801414 and 32260478)+2 种基金the Gansu Province Science and Technology Program,China(20JR10RA531)the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01E103)the Education Technology Innovation Project of Gansu Province,China(2022QB-076)。
文摘Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotton(Gossypium spp.).Here,we identified 40 ABC1Ks in upland cotton(Gossypium hirsutum L.)and found that the Gh ABC1Ks were unevenly distributed across 17 chromosomes.The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.The qRT-PCR results revealed that most Gh ABC1Ks were upregulated by exposure to different stresses.Gh ABC1K2-A05 and Gh ABC1K12-A07 expression levels were upregulated by at least three stress treatments.These genes were further functionally characterized by virus-induced gene silencing(VIGS).Compared with the controls,the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde(MDA)contents,lower catalase(CAT),peroxidase(POD)and superoxide dismutase(SOD)activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.In addition,the expression levels of six stress marker genes(Gh DREB2A,Gh SOS1,Gh CIPK6,Gh SOS2,Gh WRKY33,and Gh RD29A)were significantly downregulated after stress in the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced lines.The results indicate that knockdown of Gh ABC1K2-A05 and Gh ABC1K12-A07 make cotton more sensitive to salt and PEG stress.These findings can provide valuable information for intensive studies of Gh ABC1Ks in the responses and resistance of cotton to abiotic stresses.
文摘BACKGROUND Bevacizumab,an anti-vascular endothelial growth factor(VEGF)monoclonal antibody,inhibits angiogenesis and reduces tumor growth.Serum VEGF-C,lactate dehydrogenase,and inflammatory markers have been reported as predictive markers related to bevacizumab treatment.Programmed cell death ligand 1(PD-L1)could act upon VEGF receptor 2 to induce cancer cell angiogenesis and metastasis.AIM To investigate the efficacy of bevacizumab-containing chemotherapy in patients with metastatic colorectal cancer(CRC)according to the expression of PD-L1.METHODS This analysis included CRC patients who received bevacizumab plus FOLFOX or FOLFIRI as first-line therapy between June 24,2014 and February 28,2022,at Samsung Medical Center(Seoul,South Korea).Analysis of patient data included evaluation of PD-L1 expression by the combined positive score(CPS).We analyzed the efficacy of bevacizumab according to PD-L1 expression status in patients with CRC.RESULTS A total of 124 patients was included in this analysis.Almost all patients were treated with bevacizumab plus FOLFIRI or FOLFOX as the first-line chemotherapy.While 77%of patients received FOLFOX,23%received FOLFIRI as backbone first-line chemotherapy.The numbers of patients with a PD-L1 CPS of 1 or more,5 or more,or 10 or more were 105(85%),64(52%),and 32(26%),respectively.The results showed no significant difference in progression-free survival(PFS)and overall survival(OS)with bevacizumab treatment between patients with PDL1 CPS less than 1 and those with PD-L1 CPS of 1 or more(PD-L1<1%vs PD-L1≥1%;PFS:P=0.93,OS:P=0.33),between patients with PD-L1 CPS less than 5 and of 5 or more(PD-L1<5%vs PD-L1≥5%;PFS:P=0.409,OS:P=0.746),and between patients with PD-L1 CPS less than 10 and of 10 or more(PD-L1<10%vs PD-L1≥10%;PFS:P=0.529,OS:P=0.568).CONCLUSION Chemotherapy containing bevacizumab can be considered as first-line therapy in metastatic CRC irrespective of PD-L1 expression.
基金supported by the National Basic Research Program of China (973 Program, 2004CB117306).
文摘The study aims to clarify the differential gene expression between cotton hybrids and their parents in order to better understand the molecular basis of cotton heterosis. The research focused on cotton heterotic and lower heterotic hybrids and their parents during the four crucial stages, which were analyzed using a differential display technique. The results indicated that there were both quantitative and qualitative differences in gene expression amongst them. The quantitative differences include over- and under-expression of parental genes and the dominant expression of highly-expressed parental genes in hybrids. In contrast, the qualitative differences are the following: (i) Bands were observed in both parents but not in the F1 hybrid (BPnF1); (ii) bands occurred in either of the parents but not in the F1 hybrid (UPnF1); (iii) bands presented only in the F1 hybrid but not in either of the parents (UF1nP); and (iv) bands were detected in either of the parents and the F1 hybrid (UPF1). Overall, the major differences of gene expression occurred in the qualitative level and four related differential patterns were observed. Furthermore, the amount of differential patterns during the flowering stage was relatively higher than those of other stages. At this juncture, both the amount of hybrid-specific expression patterns at flowering stage and the silenced expression patterns at boll-forming stage in highly heterotic hybrids were found higher than those in the lower heterotic ones. It was concluded that significant differences of gene expression in leaves were present between cotton hybrid and its parents during the whole growing stages. Hence, these differences might be responsible for the observed cotton heterosis.
文摘INTRODUCTIONAdenocarcinomas of the cardia are the lesionsarising from the proximal stomach or within 3 cm ofthe gastroesophageal junction.These cancerstended to be advanced at the time of presentation,usually with poor prognosis.In recent decade,the incidence of adenocarcinoma of gastric eardiaand esophagus are increasing steadily,while therehas been a decrease in the proportion of the cancersarising from the distal stomach.The
基金The Key Science and Technology Program of Shandong Province under contract No. 2012GHY11527Natural Science Foundation of Shandong Province under contract No. Q2007E02+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (New Teachers) under contract No. 20070423027the Public Science and Technology Research Funds Projects of Ocean, State Oceanic Administration of the People’s Republic of China under contract No. 201105021-8
文摘Zostera marina, a monocotyledonous angiosperm, is one of the most important seagrass species. To inves- tigate the salt-tolerance mechanism and discover salt-tolerant genes in Z. marina, a cDNA library was con- structed. Single-pass sequencing of the 5' ends of 4 081 clones yielded 4 002 high quality expressed sequence tags (ESTs), which were assembled into 241 contigs and 1 673 singletons, representing 1 914 unigenes. The average length of the ESTs was 582 bp, with sizes ranging from 100-1 500 bp. Basic Local Alignment Search Tool (BLASTX) analysis revealed that 1 664 unigenes had significant homology to known genes in the Na- tional Center for Biotechnology Information (NCBI) non-redundant (nr) database (E-value≤5-10). Among them, the two most abundant genes encoded metallothionein (157 ESTs) and chlorophyll a/b-binding pro- tein (38 ESTs), accounting for 7.1% and 1.7% of the total ESTs, respectively. Using Kyoto Encyclopedia of Genes and Genomes (KEGG), 1 462 unigenes were assigned to 1 161 pathways (E-value≤5-10). A total of 938 unigenes were assigned Gene Ontology (GO) terms based on the GO hierarchy analysis, and InterProScan searches recognized 1 003 InterPro families. Three genes for metallothionein in Z. marina that belonged to Class II was identified. Results of this study will improve understanding of the molecular mechanisms of saline tolerance in Z. marina.
基金Supported by the Fundamental Research Funds for the Central Universities(No.20720180100)the National Natural Science Foundation of China(NSFC)(Nos.U1205123,41676158)the Fujian Science and Technology Department(No.2014N2004)
文摘Innexin proteins are a class of transmembrane proteins existing in invertebrates and they have diverse biological functions. The innexin protein Sp-inx2 has been demonstrated to play roles in immune response and promotion of cell apoptosis in the mud crab Scylla paramamosain . One novel innexin gene, named as Sp-inx3 was characterized from S. paramamosin in this study, with an open reading frame of 1 101 bp encoding 367 amino acid residues. Multiple sequence alignment revealed that the Sp-inx3 is highly homologous with innexin3 of Cancer boredis and Homorus americanus . Quantitative real-time PCR (qPCR) and the western blotting results revealed that Sp-inx3 gene was expressed predominantly in the eyestalk, brain, and thoracic ganglion mass in both female and male crabs. The immunohistochemistry assay (IHC) also showed the widespread and intense immunoreactivity of Sp-inx3 in the brain and thoracic ganglion mass. Sp-inx3 mRNA transcription profi les exhibited signifi cantly higher expression from the embryo1 to embryo4 period and low level of expression at the prehatching period and zoea I larva period of S . paramamosain . These results indicate that the Sp-inx3 may play an important role in the nervous system and early embryonic development of S . paramamosain.
基金supported by a grant from the National Natural Science Foundation of China (30500360)the Open Topic of State Key Laboratory of Agricultural Biotechnology (2009SKLAB07-2)
文摘The H19 gene, which is imprinted with preferential expression from the maternal allele, was one of the first identified imprinting genes in mammals. Recent studies revealed that correct imprinting of the H19 gene plays a vital role in human spermatogenesis. To investigate whether imprinting defects were associated with the hybrid sterility of male cattle-yak, the methylation patterns of the H19 imprinting control region (ICR) and H19 mRNA expression in the testes of cattle-yak, yak, and cattle were examined. The results showed that the 3rd CCCTC-binding factor (CTCF) site of the H19 ICR was significantly hypomethylated in the testes of cattle-yak compared with yak or cattle. As expected, H19 was expressed at a significantly higher level in cattle-yak than in yak or cattle. These results suggest that imprinting defects of the CTCF- binding site in the HI9 ICR were possibly associated with disturbed spermatogenesis of male cattle-yak. Thus, we propose that disorders in H19 imprinting, resulting in an increased H19 mRNA expression, might contribute to the sterility of F1 male hybrids between cattle and yak.
基金supported by the Guangdong Key Research and Development Program (2018B020202010)National Natural Science Foundation of China (31572124)+1 种基金Key Project of Guangdong Science and Technology Department (2015B020202009)the Key Project of Guangzhou Science and Technology Program (201508030021)
文摘To improve the understanding of molecular mechanisms of anther and/or pollen development in Chili pepper, in the present study, fulllength cDNA and DNA sequences of the pollen development-related gene CaMF5 were obtained from the anthers of a Capsicum annuum nuclear male-fertile line. Sequence analysis indicated that the full length of CaMF5 was 747 bp, containing a maximum opening reading frame of 447 bp.Amino acid sequence alignment and phylogenetic analysis revealed that CaMF5 shared approximately 37%–77% homology with a series of uncharacterized or hypothetical proteins and late embryogenesis abundant(LEA) proteins from other plants. However, no LEA structural domain was detected in CaMF5, which indicated that it might be a new type of LEA gene. CaMF5 was only expressed in flower buds at stages 7 and 8 and in open flowers of the male-fertile line, whereas it exhibited no expression in any examined organs of the male-sterile line. In addition, CaMF5 showed the highest transcript abundance in the anthers of the male-fertile line, with no expression being detected in any other examined organs, such as the sepals, petals, pistils, roots, stems, or leaves. Taken together, our results suggest that CaMF5 is an anther-specific gene that might encode a new type of LEA protein related to anther and/or pollen development in C. annuum.
基金This research was supported by the National Natural Science Foundation of China(31570691).
文摘Tea is an important non-alcoholic beverage worldwide.Tea quality is determined by numerous secondary metabolites in harvested tea leaves,including tea polyphenols,theanine,caffeine,and ascorbic acid(AsA).AsA metabolism in harvested tea leaves is affected by storage and transportation temperature.However,the molecular mechanisms underlying AsA metabolism in harvested tea leaves exposed to different storage and transportation temperature conditions remain unclear.Here we performed RP-HPLC to detect dynamic changes in AsA content in tea leaves subjected to high-(38°C),low-(4°C),or room-temperature(25°C)treatments.The AsA distribution and levels in the treated tea leaves were analyzed using cytological–anatomical characterization methods.The differentially expressed CsAPX1 and CsDHAR2 proteins,which are involved in the AsA recycling pathway,were identified from the corresponding proteomic data using iTRAQ.We also analyzed the expression profiles of 18 genes involved in AsA metabolism,including CsAPX1 and CsDHAR2.AsA was mainly distributed in tea leaf mesophyll cells.High-and low-temperature treatments upregulated the CsAPX1 and CsDHAR2 proteins and induced CsAPX and CsDHAR2 gene expression.These results indicated that the CsAPX1 and CsDHAR2 proteins might have critical roles in AsA recycling in tea leaves.Our results provide a foundation for the in-depth investigation of AsA metabolism in tea leaves during storage and transportation,and they will promote better tea flavor in tea production.
基金supported by grants from the National Natural Science Foundation of China(Nos.30200284,30600278,30772359,81100464,and 81200883)Program for New Century Excellent Talents in University of China(No.NCET-06-0641)+2 种基金Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China(No.l 2008-889)the Youth Foundation of The First Affiliated Hospital of Zhengzhou University for Doctor of MedicineGeneral Financial Grant from the China Postdoctoral Science Foundation of China(No.2012M521410)
文摘The effects of over-expression of testis-specific expressed gene 1(TSEG-1) on the viability and apoptosis of cultured spermatogonial GC-1spg cells were investigated, and the immortal spermatogonial cell line GC-1spg(CRL-2053?) was obtained as the cell model in order to explore the function of TSEG-1. We transfected the eukaryotic vector of TSEG-1, named as pEGFP-TSEG-1 into cultured spermatogonial GC-1spg cells. Over-expression of TSEG-1 inhibited the proliferation of GC-1spg cells, and arrested cell cycle slightly at G0/G1 phase. Transfection of TSEG-1 attenuated the transcript levels of Ki-67, PCNA and cyclin D1. In addition, over-expression of TSEG-1 induced early and late apoptosis, and reduced the mitochondrial membrane potential of GC-1spg cells. Moreover, transfection of TSEG-1 significantly enhanced the ratio of Bax/Bcl-2 and transcript levels of caspase 9, and decreased the expression of Fas and caspase 8 in GC-1spg cells. These results indicated over-expression of TSEG-1 suppresses the proliferation and induces the apoptosis of GC-1spg cells, which establishes a basis for further study on the function of TSEG-1.
文摘In order to detect the molecular mechanism of heterosis in pigs, the mRNA differential display technique was performed to investigate the differences of gene expression in the Longissimus dorsi tissue from Meishan, Meishan × Large White hybrid and Large White pigs with nine 3'-end anchored primers in combination with ten 5'-end arbitrary primers and nearly 3000 reproducible bands were examined. One novel expressed sequence tag (EST4, GenBank accession number: AY553914) that was differentially expressed in Meishan, Meishan× Large White hybrid and Large White pigs was isolated from the Longissimus dorsi muscle tissue and identified through semi-quantitative RT-PCR. BLAST analysis revealed that the 350 bp long EST (EST4) was not homologous to any of the known porcine genes. Tissue expression profile analyses showed that the EST4 was expressed in most of tissues.LIU Yong-gang, Ph D candidate
文摘Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeutic drugs and targets for diabetes-related sepsis.The research also incorporates traditional physical therapy perspectives,emphasizing the genomic insights gained from exercise therapy in disease management and prevention.Methods:Gene analysis was conducted on the GSE168796 and GSE94717 datasets to identify ER stress-related genes.Gene interactions and immune cell correlations were mapped using GeneCard and STRING databases.A screening of 2,456 compounds from the TCMSP database was performed to identify potential therapeutic agents,with a focus on their docking potential.Techniques such as luciferase reporter gene assay and RNA interference were used to examine the interactions between microRNA-149-5p and MMP9.Results:The study identified 2,006 differentially expressed genes and 616 miRNAs.Key genes like MMP9,TNF-α,and IL1B were linked to an immunosuppressive state.Licorice glycoside E demonstrated high affinity for MMP9,suggesting its potential effectiveness in treating diabetes.The constructed miRNA network highlighted the regulatory roles of MMP9,IL1B,IFNG,and TNF-α.Experimental evidence confirmed the binding of microRNA-149-5p to MMP9,impacting apoptosis in diabetic cells.Conclusion:The findings highlight the regulatory role of microRNA-149-5p in managing MMP9,a crucial gene in diabetes pathophysiology.Licorice glycoside E emerges as a promising treatment option for diabetes,especially targeting MMP9 affected by ER stress.The study also underscores the significance of physical exercise in modulating ER stress pathways in diabetes management,bridging traditional physical therapy and modern scientific understanding.Our study has limitations.It focuses on the microRNA-149-5p-MMP9 network in sepsis,using cell-based methods without animal or clinical trials.Despite strong in vitro findings,in vivo studies are needed to confirm licorice glycoside E’s therapeutic potential and understand the microRNA-149-5p-MMP9 dynamics in real conditions.
基金supported by the National High-Tech R&D Program of China (2011AA10A103)the National Basic Research Program of China (2009CB118400)
文摘Heterosis plays an important role in crop production and plant evolution. Although heterosis has been widely exploited by plant breeders, the underlying molecular mechanisms are not well understood. We analyzed gene expression of the highly heterotic maize hybrid Zhengdan 958 and its parents, Zheng 58 and Chang 7-2 during spikelet and floscule differentiation using the GeneChip Maize Genome Array. Pairwise comparison among Zhengdan 958 and its parents at the two stages of immature ear development identfied 1 089 and 1 352 differentially expressed genes. Gene ontology (GO) functional analysis showed that these genes participate in many functional categories, and those encoding response to stress and transcription factor may play important roles in heterosis. Pathway analysis showed that the differentially expressed genes are involved in various metabolic processes, and those participating in lipid metabolism, signal transduction, transport, and catabolism may contribute to heterosis. A non-additive expression pattern was prevalent in genes that were differentially expressed between the hybrid and its parents during both spikelet and floscule differentiation. Because genes that are differentially expressed in a hybrid and its parents could underlie heterosis, nonadditive expression patterns might contribute to the manifestation of heterosis.
文摘This study addresses the link between social media use and pro-environmental civic participation considering the moderating effect of social media affordances (public realm) on one hand, and lifestyle behaviors and climate change experiences (personal realm) on the other. We combine communication theory and behavioral models and using a sample of USA individuals (N = 7225) based on the American Trends Panel to predict variations in pro-environmental behavior. We show that social networks rather than information are more effective in predicting pro-environmental behavior. Moreover, a pro-environmental lifestyle as well as climate change experiences at the community level increase the likelihood for pro-environmental participation. However, affordances related to socioeconomic variations generate variations to pro-environmental civic participation. We conclude that in order to capture the depth of pro-environmental civic participation, it is necessary to theoretically and empirically bridge between private and public expressions of pro-environmental awareness.
基金Supported by The fortüne-program of the University of Tuebingen, No. F1281305
文摘AIM: To investigate the molecular pathways involved in human cholangiocarcinogenesis by gene expression profiling. METHODS: Oligonucleotide arrays (Affymetrix U133A) were used to establish a specific gene expression profile of intrahepatic CCC in comparison to corresponding non- malignant liver tissue. To validate the expression values of the most overexpressed genes, RT-PCR experiments were performed. RESULTS: Five hundred and fifty-two statistically differentially expressed genes/ESTs (221 probes significantly up-regulated, 331 probes down-regulated; P < 0.05; fold change > 2; ≥ 70%) were identified. Using these data and two-dimensional cluster analysis,a specific gene expression profile was obtained allowing fast and reproducible differentiation of CCC, which was confirmed by supervised neuronal network modelling. The most consistently overexpressed gene (median fold change 33.5, significantly overexpressed in 100%) encoded osteopontin. Furthermore, an association of various genes with the histopathological grading could be demonstrated. CONCLUSION: A highly specific gene expression profile for intrahepatic CCC was identified, allowing for its fast and reproducible discrimination against non- malignant liver tissue and other liver masses. The most overexpressed gene in intrahepatic CCC was the gene encoding osteopontin. These data may lead to a better understanding of human cholangiocarcinogenesis.
基金supported by National Natural Science Foundation of China(31070576 and 31270535)Natural Science Foundation of Heilongjiang Province of China(No.ZD201206)+1 种基金Excellent Youth Foundation of Heilongjiang Province of China(No.JC201306)High-level Talents Support Program of Heilongjiang University(Ecological Restoration Team)
文摘Arbuscular mycorrhiza (AM) formed between plant roots and fungi is one of the most widespread symbiotic associations in nature. To understand the molecular mechanisms of AM formation, we profiled 30 symbiosis-related genes expressed in Amorpha fruticosa roots colonized by Glomus mosseae and in non-mycorrhizal roots at different stages using differential-display RT-PCR (DDRT-PCR). The expressed genes were confirmed by reverse Northern blotting. Eleven fragments were sequenced and putatively identified by homologous alignment. Of the eleven AM-related genes, five were obtained at the early-stage of plant-fungus interaction and six at the later stage. Three expressed se-quence tag (ESTs) sequences were found to originate from the fungi and eight from the host plant by use of PCR evaluation of gDNA of both plant and fungi. The target genes included an ATP-binding cassette sub-family transporter gene, a transposon-insertion display band, and a photosynthesis-related gene. The results provided information on the molecular mechanisms underlying the development of mycorrhizal sym-biosis between woody plants and AM fungi.