The present study aims to analyze the shift in shoreline due to coastal processes and formulate available for best estimate of future shoreline positions based on precedent shorelines. Information on rates and trends ...The present study aims to analyze the shift in shoreline due to coastal processes and formulate available for best estimate of future shoreline positions based on precedent shorelines. Information on rates and trends of shoreline change can be used to improve the understanding of the underlying causes and potential effects of coastal erosion which can support informed coastal management decisions. In this paper, researchers go over the changes in the recent positions of the shoreline of the Balasore coast for the 38 years from 1975 through 2013. The study area includes the Balasore coastal region from Rasalpur to Udaypur together with Chandipur, Choumukh, Chandrabali as well as Bichitrapur. Transects wise shoreline data base were developed for approximately 67 kilometers of shoreline and erosional/accretional scenario has also been analysed by delineating the shoreline from Landsat imageries of 1975, 1980, 1990, 1995, 2000, 2005, 2010 and 2013. A simple Linear Regression Model and End Point Rate (EPR) have been adopted to take out the rate of change of shoreline and its future positions, based on empirical observations at 67 transects along the Balasore coast. It is found that the north eastern part of Balasore coast in the vicinity of Subarnarekha estuary and Chandrabali beach undergo high rates of shore line shift. The shoreline data were integrated for long- (about 17 years) and short-term (about 7 years) shift rates analysis to comprehend the shoreline change and prediction. For the prediction of future shoreline, the model has been validated with the present shoreline position (2013). The rate of shoreline movement calculated from the fixed base line to shoreline position of 1975, 1980, 1990, 1995, 2000, 2005 and 2010 and based on this, the estimated shoreline of 2013 was calculated. The estimated shoreline was compared with the actual shoreline delineated from satellite imagery of 2013. The model error or positional shift at each sample point is observed. The positional error varies from??4.82 m to 212.41 m. It has been found that model prediction error is higher in the left hand side of river Subarnarekha. The overall error for the entire predicted shoreline was found to be 41.88 m by Root Mean Square Error (RMSE). In addition, it was tested by means difference between actual and predicted shoreline positions using “t” test and it has been found that predicted shore line is not significantly different from actual shoreline position at (t132 = 0.278) p < 0.01.展开更多
Although the Cramer-Rao Bound(CRB) can be used as the benchmark of estimation algorithm performance,it's too complicated for joint training sequence(TS) design for multiple input multiple output(MIMO) orthogonal f...Although the Cramer-Rao Bound(CRB) can be used as the benchmark of estimation algorithm performance,it's too complicated for joint training sequence(TS) design for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) coordination on multiple point(CoMP) systems.So a minimum mean square error(MSE) based sub-optimal sequence design criterion was proposed,including ideal sequence correlation property and sequence length constraint.The simulation results verify the theory analysis.展开更多
文摘The present study aims to analyze the shift in shoreline due to coastal processes and formulate available for best estimate of future shoreline positions based on precedent shorelines. Information on rates and trends of shoreline change can be used to improve the understanding of the underlying causes and potential effects of coastal erosion which can support informed coastal management decisions. In this paper, researchers go over the changes in the recent positions of the shoreline of the Balasore coast for the 38 years from 1975 through 2013. The study area includes the Balasore coastal region from Rasalpur to Udaypur together with Chandipur, Choumukh, Chandrabali as well as Bichitrapur. Transects wise shoreline data base were developed for approximately 67 kilometers of shoreline and erosional/accretional scenario has also been analysed by delineating the shoreline from Landsat imageries of 1975, 1980, 1990, 1995, 2000, 2005, 2010 and 2013. A simple Linear Regression Model and End Point Rate (EPR) have been adopted to take out the rate of change of shoreline and its future positions, based on empirical observations at 67 transects along the Balasore coast. It is found that the north eastern part of Balasore coast in the vicinity of Subarnarekha estuary and Chandrabali beach undergo high rates of shore line shift. The shoreline data were integrated for long- (about 17 years) and short-term (about 7 years) shift rates analysis to comprehend the shoreline change and prediction. For the prediction of future shoreline, the model has been validated with the present shoreline position (2013). The rate of shoreline movement calculated from the fixed base line to shoreline position of 1975, 1980, 1990, 1995, 2000, 2005 and 2010 and based on this, the estimated shoreline of 2013 was calculated. The estimated shoreline was compared with the actual shoreline delineated from satellite imagery of 2013. The model error or positional shift at each sample point is observed. The positional error varies from??4.82 m to 212.41 m. It has been found that model prediction error is higher in the left hand side of river Subarnarekha. The overall error for the entire predicted shoreline was found to be 41.88 m by Root Mean Square Error (RMSE). In addition, it was tested by means difference between actual and predicted shoreline positions using “t” test and it has been found that predicted shore line is not significantly different from actual shoreline position at (t132 = 0.278) p < 0.01.
基金International Science&Technology Cooperation Projects of Qinghai,China(Nos.2013-H-811,2014-HZ-821)Chunhui Plan Projects,China(Nos.Z2014013,Z2014014)
文摘Although the Cramer-Rao Bound(CRB) can be used as the benchmark of estimation algorithm performance,it's too complicated for joint training sequence(TS) design for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) coordination on multiple point(CoMP) systems.So a minimum mean square error(MSE) based sub-optimal sequence design criterion was proposed,including ideal sequence correlation property and sequence length constraint.The simulation results verify the theory analysis.