In order to study the temporal variations of correlations between two time series,a running correlation coefficient(RCC)could be used.An RCC is calculated for a given time window,and the window is then moved sequentia...In order to study the temporal variations of correlations between two time series,a running correlation coefficient(RCC)could be used.An RCC is calculated for a given time window,and the window is then moved sequentially through time.The current calculation method for RCCs is based on the general definition of the Pearson product-moment correlation coefficient,calculated with the data within the time window,which we call the local running correlation coefficient(LRCC).The LRCC is calculated via the two anomalies corresponding to the two local means,meanwhile,the local means also vary.It is cleared up that the LRCC reflects only the correlation between the two anomalies within the time window but fails to exhibit the contributions of the two varying means.To address this problem,two unchanged means obtained from all available data are adopted to calculate an RCC,which is called the synthetic running correlation coefficient(SRCC).When the anomaly variations are dominant,the two RCCs are similar.However,when the variations of the means are dominant,the difference between the two RCCs becomes obvious.The SRCC reflects the correlations of both the anomaly variations and the variations of the means.Therefore,the SRCCs from different time points are intercomparable.A criterion for the superiority of the RCC algorithm is that the average value of the RCC should be close to the global correlation coefficient calculated using all data.The SRCC always meets this criterion,while the LRCC sometimes fails.Therefore,the SRCC is better than the LRCC for running correlations.We suggest using the SRCC to calculate the RCCs.展开更多
Studying the relationship between climate factors and soil organic carbon (SOC) is vitally important. However, how SOC responses to climate (temperature and precipitation) at cohesive extents is poorly studied. Tw...Studying the relationship between climate factors and soil organic carbon (SOC) is vitally important. However, how SOC responses to climate (temperature and precipitation) at cohesive extents is poorly studied. Two transects of approximately the same length (transect P and transect T) were selected to examine the variation of SOC content in relation to mean annual temperature (MAT) and mean annual precipitation (MAP). The coefficients of partial correlation between SOC density and MAT (Rt) and MAP (Rp) were determined to quantify the relationships between SOC density and the two climate factors. The results indicated that for transect T, Rt was statistically significant once the extent level was greater than or equal to two fundamental extent units, while for transect P, Rp showed statistical significance only at extent levels which were greater than two fundamental extent traits. At the same extent levels but in different transects, Rts exhibited no zonal difference, but Rps did once the extent level was greater than two fundamental extent units. Therefore, to study the relationship between SOC density and different climate factors, different minimum extent levels should be ex- amined. The results of this paper could deepen the understanding of the impacts that SOC pool has on terrestrial ecosystem and global carbon cycling.展开更多
针对如何快速实现地面观测获得的时序天文FITS(Flexible Image Transport System)图像的自动化分类和检验问题,提出了一种FITS图像自检验和自分类方法,该方法结合了K-means聚类算法及其思想,同时加入了一种基于皮尔逊相关系数的相似度...针对如何快速实现地面观测获得的时序天文FITS(Flexible Image Transport System)图像的自动化分类和检验问题,提出了一种FITS图像自检验和自分类方法,该方法结合了K-means聚类算法及其思想,同时加入了一种基于皮尔逊相关系数的相似度算法。通过比较该方法与基于有监督的VGG13分类网络和基于无监督的K-means聚类算法应用于真实的天文数据分类得到的错误数量,得出该方法的分类准确率达94%以上。该方法一方面检验出了历史数据中存在的错误情况,摆脱了对关键词IMAGETYP和观测日志的依赖,进一步规范和完善了历史存储的天文FITS数据;另一方面增强了分类的可靠性,提高了数据获取效率,降低了人工成本。展开更多
Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the mari...Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the marine environment,the signals collected by hydrophone contain a variety of noises,which makes it challenging to extract useful signals for localization.To solve this problem,a hydrophone denoising algorithm is proposed based on variational modal decomposition(VMD)with grey wolf optimization.First,the average envelope entropy is used as the fitness function of the grey wolf optimizer to find the optimal solution for the parameters K andα.Afterward,the VMD algorithm decomposes the original signal parameters to obtain the intrinsic mode functions(IMFs).Subsequently,the number of interrelationships between each IMF and the original signal was calculated,the threshold value was set,and the noise signal was removed to calculate the time difference using the valid signal obtained by reconstruction.Finally,the arrival time difference is used to locate the origin of the leak.The localization accuracy of the method in finding leaks is investigated experimentally by constructing a simulated leak test rig,and the effectiveness and feasibility of the method are verified.展开更多
基金supported by the Key Program of the National Natural Science Foundation of China (No. 41330960)the Global Change Research Program of China (No. 2015CB953900)
文摘In order to study the temporal variations of correlations between two time series,a running correlation coefficient(RCC)could be used.An RCC is calculated for a given time window,and the window is then moved sequentially through time.The current calculation method for RCCs is based on the general definition of the Pearson product-moment correlation coefficient,calculated with the data within the time window,which we call the local running correlation coefficient(LRCC).The LRCC is calculated via the two anomalies corresponding to the two local means,meanwhile,the local means also vary.It is cleared up that the LRCC reflects only the correlation between the two anomalies within the time window but fails to exhibit the contributions of the two varying means.To address this problem,two unchanged means obtained from all available data are adopted to calculate an RCC,which is called the synthetic running correlation coefficient(SRCC).When the anomaly variations are dominant,the two RCCs are similar.However,when the variations of the means are dominant,the difference between the two RCCs becomes obvious.The SRCC reflects the correlations of both the anomaly variations and the variations of the means.Therefore,the SRCCs from different time points are intercomparable.A criterion for the superiority of the RCC algorithm is that the average value of the RCC should be close to the global correlation coefficient calculated using all data.The SRCC always meets this criterion,while the LRCC sometimes fails.Therefore,the SRCC is better than the LRCC for running correlations.We suggest using the SRCC to calculate the RCCs.
基金Under the auspices of Strategic Priority Research Program-Climate Change:Carbon Budget and Related Issues of Chinese Academy of Sciences(No.XDA05050503)National Key Technology Research and Development Program of China(No.2013BAD11B00)National Natural Science Foundation of China(No.41301242)
文摘Studying the relationship between climate factors and soil organic carbon (SOC) is vitally important. However, how SOC responses to climate (temperature and precipitation) at cohesive extents is poorly studied. Two transects of approximately the same length (transect P and transect T) were selected to examine the variation of SOC content in relation to mean annual temperature (MAT) and mean annual precipitation (MAP). The coefficients of partial correlation between SOC density and MAT (Rt) and MAP (Rp) were determined to quantify the relationships between SOC density and the two climate factors. The results indicated that for transect T, Rt was statistically significant once the extent level was greater than or equal to two fundamental extent units, while for transect P, Rp showed statistical significance only at extent levels which were greater than two fundamental extent traits. At the same extent levels but in different transects, Rts exhibited no zonal difference, but Rps did once the extent level was greater than two fundamental extent units. Therefore, to study the relationship between SOC density and different climate factors, different minimum extent levels should be ex- amined. The results of this paper could deepen the understanding of the impacts that SOC pool has on terrestrial ecosystem and global carbon cycling.
文摘针对如何快速实现地面观测获得的时序天文FITS(Flexible Image Transport System)图像的自动化分类和检验问题,提出了一种FITS图像自检验和自分类方法,该方法结合了K-means聚类算法及其思想,同时加入了一种基于皮尔逊相关系数的相似度算法。通过比较该方法与基于有监督的VGG13分类网络和基于无监督的K-means聚类算法应用于真实的天文数据分类得到的错误数量,得出该方法的分类准确率达94%以上。该方法一方面检验出了历史数据中存在的错误情况,摆脱了对关键词IMAGETYP和观测日志的依赖,进一步规范和完善了历史存储的天文FITS数据;另一方面增强了分类的可靠性,提高了数据获取效率,降低了人工成本。
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFC2806102)the National Natural Science Foundation of China(Grant Nos.52171287,52325107)+2 种基金High Tech Ship Research Project of Ministry of Industry and Information Technology(Grant Nos.2023GXB01-05-004-03,GXBZH2022-293)the Science Foundation for Distinguished Young Scholars of Shandong Province(Grant No.ZR2022JQ25)the Taishan Scholars Project(Grant No.tsqn201909063)。
文摘Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the marine environment,the signals collected by hydrophone contain a variety of noises,which makes it challenging to extract useful signals for localization.To solve this problem,a hydrophone denoising algorithm is proposed based on variational modal decomposition(VMD)with grey wolf optimization.First,the average envelope entropy is used as the fitness function of the grey wolf optimizer to find the optimal solution for the parameters K andα.Afterward,the VMD algorithm decomposes the original signal parameters to obtain the intrinsic mode functions(IMFs).Subsequently,the number of interrelationships between each IMF and the original signal was calculated,the threshold value was set,and the noise signal was removed to calculate the time difference using the valid signal obtained by reconstruction.Finally,the arrival time difference is used to locate the origin of the leak.The localization accuracy of the method in finding leaks is investigated experimentally by constructing a simulated leak test rig,and the effectiveness and feasibility of the method are verified.