In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some ...In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some important properties of such integral are discussed.Finally,various kinds of convergence theorems of a sequence of fuzzy concave integrals are proved.展开更多
Aim To extend several fundamental theorems of conventional elasticity theory to quasicrystalelasticity theory. Methods The basic governing equations of quasicrystal elasticity theory and Gauss's theorem were appli...Aim To extend several fundamental theorems of conventional elasticity theory to quasicrystalelasticity theory. Methods The basic governing equations of quasicrystal elasticity theory and Gauss's theorem were applied in the derivation. Results and Conclusion The principle of virtual work, Betti's reciprocal theorem and the uniqueness theorem of quasicrystal elasticity theory are proud, and some conservative integrals in quasicrystal elasticty theory are obtained.展开更多
Firstly,some properties for(p,q)-monogenic functions withα-weight in Clifford analysis are given.Then,the Cauchy-Pompeiu formula is proved.Finally,the Cauchy integral formula and the Cauchy integral theorem for(p,q)-...Firstly,some properties for(p,q)-monogenic functions withα-weight in Clifford analysis are given.Then,the Cauchy-Pompeiu formula is proved.Finally,the Cauchy integral formula and the Cauchy integral theorem for(p,q)-monogenic functions withα-weight are given.展开更多
Using the unsymmetrical one-range addition theorems introduced by one of the authors with the help of complete orthonormal sets of $/varPsi ^/alpha $-exponential type orbitals ($/alpha = 1,0, - 1, - 2,...)$, this...Using the unsymmetrical one-range addition theorems introduced by one of the authors with the help of complete orthonormal sets of $/varPsi ^/alpha $-exponential type orbitals ($/alpha = 1,0, - 1, - 2,...)$, this paper presents the sets of series expansion relations for multicentre nuclear attraction integrals over Slater-type orbitals arising in Hartree--Fock--Roothaan equations for molecules. The final results are expressed through multicentre charge density expansion coefficients and basic integrals. The convergence of the series is tested by calculating concrete cases for arbitrary values of parameters of orbitals.展开更多
In this article,the authors discussed the boundary behavior for the Cauchy- type integrals with values in a Clifford algebra,obtained some Sochocki–Plemelj formulae and Privalov–Muskhelishvili theorems for the Cauch...In this article,the authors discussed the boundary behavior for the Cauchy- type integrals with values in a Clifford algebra,obtained some Sochocki–Plemelj formulae and Privalov–Muskhelishvili theorems for the Cauchy-type integral taken over a smooth surface by rather simple method.展开更多
This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a disc...This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a discrete analogue of theorem of Noether in the calculus of variations. An example is given to illustrate the application of the results.展开更多
In the paper, we establish the LP(Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution {(y,γ(|y|), y ∈ Rn} with rough kernels. We also give several applications o...In the paper, we establish the LP(Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution {(y,γ(|y|), y ∈ Rn} with rough kernels. We also give several applications of this inequality.展开更多
In this paper the conservation theorems of the constrained Birkhoffian systems are studied by using the method of integrating factors. The differential equations of motion of the system are written. The definition of ...In this paper the conservation theorems of the constrained Birkhoffian systems are studied by using the method of integrating factors. The differential equations of motion of the system are written. The definition of integrating factors is given for the system. The necessary conditions for the existence of the conserved quantity for the system are studied. The conservation theorem and its inverse for the system are established. Finally, an example is given to illustrate the application of the results.展开更多
In this paper, Liouville-type theorems of nonnegative solutions for some elliptic integral systems are considered. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of St...In this paper, Liouville-type theorems of nonnegative solutions for some elliptic integral systems are considered. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of Stein-Weiss inequality instead of Maximum Principle.展开更多
The integrating factors and conservation theorems of nonholonomic dynamical system of relative motion are studied. First, the dynamical equations of relative motion of system are written. Next, the definition of integ...The integrating factors and conservation theorems of nonholonomic dynamical system of relative motion are studied. First, the dynamical equations of relative motion of system are written. Next, the definition of integrating factors is given, and the necessary conditions for the existence of the conserved quantities are studied in detail. Then, the conservation theorem and its inverse of system are established. Finally, an example is given to illustrate the application of the result.展开更多
The conservation theorems of the generalized Lagrangian equations for nonconservative mechanical system are studied by using method of integrating factors. Firstly, the differential equations of motion of system are g...The conservation theorems of the generalized Lagrangian equations for nonconservative mechanical system are studied by using method of integrating factors. Firstly, the differential equations of motion of system are given, and the definition of integrating factors is given. Next, the necessary conditions for the existence of the conserved quantity are studied in detail. Finally, the conservation theorem and its inverse for the system are established, and an example is given to illustrate the application of the result.展开更多
By combining of the second gradient operator, the second class of integral theorems, the Gaussian-curvature-based integral theorems and the Gaussian (or spherical) mapping, a series of invariants or geometric conser...By combining of the second gradient operator, the second class of integral theorems, the Gaussian-curvature-based integral theorems and the Gaussian (or spherical) mapping, a series of invariants or geometric conservation quantities under Gaussian (or spherical) mapping are revealed. From these mapping invariants important transformations between original curved surface and the spherical surface are derived. The potential applications of these invariants and transformations to geometry are discussed展开更多
In this article, we introduce the Hausdorff convergence to derive a differentiable sphere theorem which shows an interesting rigidity phenomenon on some kind of manifolds.
The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we ded...The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we deduce the existence of solution of an initial value problem of fractional order that be studied only on a bounded interval. The main tools used are Schauder fixed point theorem, measure of weak noncompactness, superposition operator and fractional calculus.展开更多
The shape equation of lipid membranes is a fourth-order partial differential equation.Under the axisymmetric condi-tion,this equation was transformed into a second-order ordinary differential equation(ODE)by Zheng and...The shape equation of lipid membranes is a fourth-order partial differential equation.Under the axisymmetric condi-tion,this equation was transformed into a second-order ordinary differential equation(ODE)by Zheng and Liu(Phys.Rev.E 482856(1993)).Here we try to further reduce this second-order ODE to a first-order ODE.First,we invert the usual process of variational calculus,that is,we construct a Lagrangian for which the ODE is the corresponding Euler-Lagrange equation.Then,we seek symmetries of this Lagrangian according to the Noether theorem.Under a certain restriction on Lie groups of the shape equation,we find that the first integral only exists when the shape equation is identical to the Will-more equation,in which case the symmetry leading to the first integral is scale invariance.We also obtain the mechanical interpretation of the first integral by using the membrane stress tensor.展开更多
In this paper, we discuss the estimation of the number of zeros of the Abelian integral for the quadratic system which has a periodic region with a parabola and a straight line as its boundary when we perturb the syst...In this paper, we discuss the estimation of the number of zeros of the Abelian integral for the quadratic system which has a periodic region with a parabola and a straight line as its boundary when we perturb the system inside the class of all polynomial systems of degree n. The main result is that the upper bound for the number of zeros of the Abelian integral associated to this system is 3n-1.展开更多
We show in this work that the limit in law of the cross-variation of processes having the form of Young integral with respect to a general self-similar centered Gaussian process of orderβ∈(1/2,3/4]is normal accordin...We show in this work that the limit in law of the cross-variation of processes having the form of Young integral with respect to a general self-similar centered Gaussian process of orderβ∈(1/2,3/4]is normal according to the values ofβ.We apply our results to two self-similar Gaussian processes:the subfractional Brownian motion and the bifractional Brownian motion.展开更多
Characteristics of Mode I crack near the interface of elasticity matched but plasticity and strength mismatched materials differ from those of the crack in a homogenous body. Interface body of different strength influ...Characteristics of Mode I crack near the interface of elasticity matched but plasticity and strength mismatched materials differ from those of the crack in a homogenous body. Interface body of different strength influences the plastic or cohesive zone at the crack tip in parent body. The mathematical model for load line opening of the crack near the interface in linear elastic regime involves singular integrals. The paper presents explicit solution of these integrals with the help of Cauchy’s principal value theorem. Cases of thin and thick welds between the materials are investigated. Solutions of the integrals are well substantiated. Final results are provided in a consolidated form.展开更多
In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytical...In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.展开更多
基金Supported in part by the National Social Science Foundation of China(19BTJ020)。
文摘In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some important properties of such integral are discussed.Finally,various kinds of convergence theorems of a sequence of fuzzy concave integrals are proved.
文摘Aim To extend several fundamental theorems of conventional elasticity theory to quasicrystalelasticity theory. Methods The basic governing equations of quasicrystal elasticity theory and Gauss's theorem were applied in the derivation. Results and Conclusion The principle of virtual work, Betti's reciprocal theorem and the uniqueness theorem of quasicrystal elasticity theory are proud, and some conservative integrals in quasicrystal elasticty theory are obtained.
基金Supported by the National Natural Science Foundation of China(11871191)the Science Foundation of Hebei Province(A2023205006,A2019106037)+2 种基金the Key Development Foundation of Hebei Normal University in2024(L2024ZD08)the Graduate Student Innovation Project Fund of Hebei Province(CXZZBS2022066)the Key Foundation of Hebei Normal University(L2018Z01)。
文摘Firstly,some properties for(p,q)-monogenic functions withα-weight in Clifford analysis are given.Then,the Cauchy-Pompeiu formula is proved.Finally,the Cauchy integral formula and the Cauchy integral theorem for(p,q)-monogenic functions withα-weight are given.
文摘Using the unsymmetrical one-range addition theorems introduced by one of the authors with the help of complete orthonormal sets of $/varPsi ^/alpha $-exponential type orbitals ($/alpha = 1,0, - 1, - 2,...)$, this paper presents the sets of series expansion relations for multicentre nuclear attraction integrals over Slater-type orbitals arising in Hartree--Fock--Roothaan equations for molecules. The final results are expressed through multicentre charge density expansion coefficients and basic integrals. The convergence of the series is tested by calculating concrete cases for arbitrary values of parameters of orbitals.
基金Project supported by NNSF of China(10471107)RFDP of Higher Eduction of China(20060486001)
文摘In this article,the authors discussed the boundary behavior for the Cauchy- type integrals with values in a Clifford algebra,obtained some Sochocki–Plemelj formulae and Privalov–Muskhelishvili theorems for the Cauchy-type integral taken over a smooth surface by rather simple method.
基金Project partially supported by the National Natural Science Foundation of China (Grant No 10172056) and the Science Research of the Education Bureau of Anhui Province, China (Grant No 2006KJ263B). Acknowledgement We wish to thank the referees for their careful reading of the manuscript and their useful remarks which helped us to improve the quality of this paper.
文摘This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a discrete analogue of theorem of Noether in the calculus of variations. An example is given to illustrate the application of the results.
基金Supported by the National Natural Science Foundation of China(10931001, 10871173)
文摘In the paper, we establish the LP(Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution {(y,γ(|y|), y ∈ Rn} with rough kernels. We also give several applications of this inequality.
基金Project supported by the Heilongjiang Natural Science Foundation of China (Grant No 9507)
文摘In this paper the conservation theorems of the constrained Birkhoffian systems are studied by using the method of integrating factors. The differential equations of motion of the system are written. The definition of integrating factors is given for the system. The necessary conditions for the existence of the conserved quantity for the system are studied. The conservation theorem and its inverse for the system are established. Finally, an example is given to illustrate the application of the results.
文摘In this paper, Liouville-type theorems of nonnegative solutions for some elliptic integral systems are considered. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of Stein-Weiss inequality instead of Maximum Principle.
基金The project supported by Natural Science Foundation of Heilongjiang Province of China under Grant No. 9507
文摘The integrating factors and conservation theorems of nonholonomic dynamical system of relative motion are studied. First, the dynamical equations of relative motion of system are written. Next, the definition of integrating factors is given, and the necessary conditions for the existence of the conserved quantities are studied in detail. Then, the conservation theorem and its inverse of system are established. Finally, an example is given to illustrate the application of the result.
基金The project supported by the Natural Science Foundation of Heilongjiang Province of China under Grant No. 9507
文摘The conservation theorems of the generalized Lagrangian equations for nonconservative mechanical system are studied by using method of integrating factors. Firstly, the differential equations of motion of system are given, and the definition of integrating factors is given. Next, the necessary conditions for the existence of the conserved quantity are studied in detail. Finally, the conservation theorem and its inverse for the system are established, and an example is given to illustrate the application of the result.
基金Project supported by the National Natural Science Foundation of China (No.10572076)
文摘By combining of the second gradient operator, the second class of integral theorems, the Gaussian-curvature-based integral theorems and the Gaussian (or spherical) mapping, a series of invariants or geometric conservation quantities under Gaussian (or spherical) mapping are revealed. From these mapping invariants important transformations between original curved surface and the spherical surface are derived. The potential applications of these invariants and transformations to geometry are discussed
基金Supported by the NNSF of China (10671066)the NSF of Shandong Province (Q2008A08)Scientific Research Foundation of QFNU
文摘In this article, we introduce the Hausdorff convergence to derive a differentiable sphere theorem which shows an interesting rigidity phenomenon on some kind of manifolds.
文摘The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we deduce the existence of solution of an initial value problem of fractional order that be studied only on a bounded interval. The main tools used are Schauder fixed point theorem, measure of weak noncompactness, superposition operator and fractional calculus.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274046)the National Science Foundation of the United States(Grant No.1515007)
文摘The shape equation of lipid membranes is a fourth-order partial differential equation.Under the axisymmetric condi-tion,this equation was transformed into a second-order ordinary differential equation(ODE)by Zheng and Liu(Phys.Rev.E 482856(1993)).Here we try to further reduce this second-order ODE to a first-order ODE.First,we invert the usual process of variational calculus,that is,we construct a Lagrangian for which the ODE is the corresponding Euler-Lagrange equation.Then,we seek symmetries of this Lagrangian according to the Noether theorem.Under a certain restriction on Lie groups of the shape equation,we find that the first integral only exists when the shape equation is identical to the Will-more equation,in which case the symmetry leading to the first integral is scale invariance.We also obtain the mechanical interpretation of the first integral by using the membrane stress tensor.
文摘In this paper, we discuss the estimation of the number of zeros of the Abelian integral for the quadratic system which has a periodic region with a parabola and a straight line as its boundary when we perturb the system inside the class of all polynomial systems of degree n. The main result is that the upper bound for the number of zeros of the Abelian integral associated to this system is 3n-1.
基金The first author was supported by the Fulbright joint supervision program for PhD students for the academic year 2018-2019 between Cadi Ayyad University and Michigan State University.
文摘We show in this work that the limit in law of the cross-variation of processes having the form of Young integral with respect to a general self-similar centered Gaussian process of orderβ∈(1/2,3/4]is normal according to the values ofβ.We apply our results to two self-similar Gaussian processes:the subfractional Brownian motion and the bifractional Brownian motion.
文摘Characteristics of Mode I crack near the interface of elasticity matched but plasticity and strength mismatched materials differ from those of the crack in a homogenous body. Interface body of different strength influences the plastic or cohesive zone at the crack tip in parent body. The mathematical model for load line opening of the crack near the interface in linear elastic regime involves singular integrals. The paper presents explicit solution of these integrals with the help of Cauchy’s principal value theorem. Cases of thin and thick welds between the materials are investigated. Solutions of the integrals are well substantiated. Final results are provided in a consolidated form.
基金supported by the National Natural Science Foundation of China (11901184, 11771343)the Natural Science Foundation of Hunan Province (2020JJ5025)。
文摘In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.