This paper assess the eco-environmental benefits that may come from the middle route project of China's South-North Water Transfer Scheme(SNWT) with principles and methods of eco-economics and planning reports of ...This paper assess the eco-environmental benefits that may come from the middle route project of China's South-North Water Transfer Scheme(SNWT) with principles and methods of eco-economics and planning reports of SNWT's middle route project. Some benefits were calculated in monetary units. To make sure that the results can be comparable with normal monetary indices, concrete assessment objects and the parameters are prudently selected according to the major characteristics of the project and its water import region. Primary assessment revealed that in different project construction stages, the benefit could be more than 13 07 billion RMB Yuan in 2010 and 19 79 billion RMB Yuan in 2030, respectively. The monetary value tends to increase with social-economic development. To realize these potential benefits, however, calls for more endeavors.展开更多
Nutrient levels in the artificial channel constructed for the Middle Route Project are significant indicators of water quality safety and aquatic ecological integrity for this large,interbasin scheme.However,the distr...Nutrient levels in the artificial channel constructed for the Middle Route Project are significant indicators of water quality safety and aquatic ecological integrity for this large,interbasin scheme.However,the distribution and transport of nutrients along the channel were poorly understood.Based on a time-series dataset as well as mass balance and material flow analysis methods,the water and nutrient transport fluxes in the Middle Route of the South-to-North Water Diversion Project were identified in this study.The results indicate that the nutrient concentrations varied considerably with time,but there was no significant difference among the 30 stations of the main channel.Seasonal temperature difference was the major factor in the large fluctuations of water quality indicators over time.The nutrient loadings varied with the water volume outputs from the main channel to the waterreceiving cities.Atmospheric deposition was an important source of nutrients in the main channel,accounting for 9.13%,20.6%,and 0.635%of the nitrogen,phosphorus,and sulfur input from the Danjiangkou Reservoir,respectively.In 2021,a net accumulation of 988 tons of N,29 tons of P,and 2,540 tons of S,respectively,were present in the main channel.The increase of these external and internal nutrient loadings would cause water quality fluctuation and deterioration in some local sections of the main channel.Our study quantified the spatial and temporal patterns of nutrient transport in the Middle Route and revealed the ecological effects on the aquatic environment,assisting authorities on the project to develop effective water conservation strategies.展开更多
文摘This paper assess the eco-environmental benefits that may come from the middle route project of China's South-North Water Transfer Scheme(SNWT) with principles and methods of eco-economics and planning reports of SNWT's middle route project. Some benefits were calculated in monetary units. To make sure that the results can be comparable with normal monetary indices, concrete assessment objects and the parameters are prudently selected according to the major characteristics of the project and its water import region. Primary assessment revealed that in different project construction stages, the benefit could be more than 13 07 billion RMB Yuan in 2010 and 19 79 billion RMB Yuan in 2030, respectively. The monetary value tends to increase with social-economic development. To realize these potential benefits, however, calls for more endeavors.
基金supported by the National Natural Science Foundation of China (Nos.52270202,and 41877471)the special fund was from the State Key Joint Laboratory of Environment Simulation and Pollution Control (Research Center for Eco-environmental Sciences,Chinese Academy of Sciences) (No.21Z02ESPCR)。
文摘Nutrient levels in the artificial channel constructed for the Middle Route Project are significant indicators of water quality safety and aquatic ecological integrity for this large,interbasin scheme.However,the distribution and transport of nutrients along the channel were poorly understood.Based on a time-series dataset as well as mass balance and material flow analysis methods,the water and nutrient transport fluxes in the Middle Route of the South-to-North Water Diversion Project were identified in this study.The results indicate that the nutrient concentrations varied considerably with time,but there was no significant difference among the 30 stations of the main channel.Seasonal temperature difference was the major factor in the large fluctuations of water quality indicators over time.The nutrient loadings varied with the water volume outputs from the main channel to the waterreceiving cities.Atmospheric deposition was an important source of nutrients in the main channel,accounting for 9.13%,20.6%,and 0.635%of the nitrogen,phosphorus,and sulfur input from the Danjiangkou Reservoir,respectively.In 2021,a net accumulation of 988 tons of N,29 tons of P,and 2,540 tons of S,respectively,were present in the main channel.The increase of these external and internal nutrient loadings would cause water quality fluctuation and deterioration in some local sections of the main channel.Our study quantified the spatial and temporal patterns of nutrient transport in the Middle Route and revealed the ecological effects on the aquatic environment,assisting authorities on the project to develop effective water conservation strategies.