In this paper,we calculated the branching ratios and direct CP violation of the four B→Kπ decays with the inclusion of all currently known next-to-leading order(NLO) contributions by employing the perturbative QCD...In this paper,we calculated the branching ratios and direct CP violation of the four B→Kπ decays with the inclusion of all currently known next-to-leading order(NLO) contributions by employing the perturbative QCD(pQCD) factorization approach.We found that(a) Besides the 10%enhancement from the NLO vertex corrections,the quark-loops and magnetic penguins,the NLO contributions to the form factors can provide an additional^15%enhancement to the branching ratios,and lead to a very good agreement with the data;(b) The NLO pQCD predictions are A_(CP)^(dir)(B^0→K~+π~0)=(-6.5±3.1)%and A_(CP)^(dir)(B~+→K~+π~0)=(2.2±2.0)%,become well consistent with the data due to the inclusion of the NLO contributions.展开更多
By employing the perturbative QCD (pQCD) factorization approach, we calculate the full leading and the partial next-to-leading order (NLO) contributions to the seven B →πη(′) and η(′)η(′) decays. For...By employing the perturbative QCD (pQCD) factorization approach, we calculate the full leading and the partial next-to-leading order (NLO) contributions to the seven B →πη(′) and η(′)η(′) decays. For B^+→ π+η(′) decays, the pQCD predictions for their decay rates agree very well with the data after the inclusion of the small NLO contributions. For neutral decays, the pQCD predictions are also consistent with the experimental upper limits and can be tested by the LHC experiments. The measured value of dir .Acp^dir(π+η)= 19±7% can also be accommodated by the pQCD approach.展开更多
In this paper,we calculate the branching ratios for B^+→D_s^+η,B^+→D_s^+η′,B^+→D_s^(*+)η and B^+→D_s^(*+)η′decays by employing the perturbative QCD (pQCD) factorization approach.Under the two kinds of η-η...In this paper,we calculate the branching ratios for B^+→D_s^+η,B^+→D_s^+η′,B^+→D_s^(*+)η and B^+→D_s^(*+)η′decays by employing the perturbative QCD (pQCD) factorization approach.Under the two kinds of η-η′ mixingschemes,the quark-flavor mixing scheme and the singlet-octet mixing scheme,we find that the calculated branchingratios agree well with the currently available experimental upper limits.We also consider the so called 'f_D_s puzzle',byusing two groups of parameters about the D_s^((*)) meson decay constants,that are f_D_s = 241 MeV,f_D_s~* = 272 MeV andf_D_s = 274 MeV,f_D_s~* = 312 MeV,to calculate the branching ratios for the considered decays.We find that the resultschange 30% by using these two different kinds of paramters.展开更多
In this paper, we calculate the branching ratios and the direct CP-violating asymmetries for decays B^0 → a0^0(980)π^0, a0^+ (980)π^-, a0^-(980)π^+ and B^- → a0^0 (980)π^-, a0^- (980)π^0 by employin...In this paper, we calculate the branching ratios and the direct CP-violating asymmetries for decays B^0 → a0^0(980)π^0, a0^+ (980)π^-, a0^-(980)π^+ and B^- → a0^0 (980)π^-, a0^- (980)π^0 by employing the perturbative QCD (pQCD) factorization approach at the leading order. We found that (a) the pQCD predictions for the branching ratios are around (0.4-2.8) × 10^-6, consistent with currently available experimental upper limits; (b) the CP asymmetries of B^0→ a0^0(980)π^0 and B^- → a0^- (980)π^0 decays can be large, about (70-80)% for α= 100°.展开更多
基金Supported by National Natural Science Foundation of China(10975074,11235005)
文摘In this paper,we calculated the branching ratios and direct CP violation of the four B→Kπ decays with the inclusion of all currently known next-to-leading order(NLO) contributions by employing the perturbative QCD(pQCD) factorization approach.We found that(a) Besides the 10%enhancement from the NLO vertex corrections,the quark-loops and magnetic penguins,the NLO contributions to the form factors can provide an additional^15%enhancement to the branching ratios,and lead to a very good agreement with the data;(b) The NLO pQCD predictions are A_(CP)^(dir)(B^0→K~+π~0)=(-6.5±3.1)%and A_(CP)^(dir)(B~+→K~+π~0)=(2.2±2.0)%,become well consistent with the data due to the inclusion of the NLO contributions.
基金Supported by National Natural Science Foundation of China (10575052, 10735080)Specialized Research Fund for Doctoral Program of Higher Education (SRFDP) (20050319008)
文摘By employing the perturbative QCD (pQCD) factorization approach, we calculate the full leading and the partial next-to-leading order (NLO) contributions to the seven B →πη(′) and η(′)η(′) decays. For B^+→ π+η(′) decays, the pQCD predictions for their decay rates agree very well with the data after the inclusion of the small NLO contributions. For neutral decays, the pQCD predictions are also consistent with the experimental upper limits and can be tested by the LHC experiments. The measured value of dir .Acp^dir(π+η)= 19±7% can also be accommodated by the pQCD approach.
文摘In this paper,we calculate the branching ratios for B^+→D_s^+η,B^+→D_s^+η′,B^+→D_s^(*+)η and B^+→D_s^(*+)η′decays by employing the perturbative QCD (pQCD) factorization approach.Under the two kinds of η-η′ mixingschemes,the quark-flavor mixing scheme and the singlet-octet mixing scheme,we find that the calculated branchingratios agree well with the currently available experimental upper limits.We also consider the so called 'f_D_s puzzle',byusing two groups of parameters about the D_s^((*)) meson decay constants,that are f_D_s = 241 MeV,f_D_s~* = 272 MeV andf_D_s = 274 MeV,f_D_s~* = 312 MeV,to calculate the branching ratios for the considered decays.We find that the resultschange 30% by using these two different kinds of paramters.
基金Supported by National Natural Science Foundation of China (10575052,10735080)
文摘In this paper, we calculate the branching ratios and the direct CP-violating asymmetries for decays B^0 → a0^0(980)π^0, a0^+ (980)π^-, a0^-(980)π^+ and B^- → a0^0 (980)π^-, a0^- (980)π^0 by employing the perturbative QCD (pQCD) factorization approach at the leading order. We found that (a) the pQCD predictions for the branching ratios are around (0.4-2.8) × 10^-6, consistent with currently available experimental upper limits; (b) the CP asymmetries of B^0→ a0^0(980)π^0 and B^- → a0^- (980)π^0 decays can be large, about (70-80)% for α= 100°.