期刊文献+
共找到136,015篇文章
< 1 2 250 >
每页显示 20 50 100
Single event effects evaluation on convolution neural network in Xilinx 28 nm system on chip
1
作者 赵旭 杜雪成 +4 位作者 熊旭 马超 杨卫涛 郑波 周超 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期638-644,共7页
Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic partic... Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic particles, such as heavy ions, protons, and alpha particles, can induce single event effects(SEEs) that lead CNNs to malfunction and can significantly impact the reliability of a CNN system. In this paper, the MNIST CNN system was constructed based on a 28 nm systemon-chip(SoC), and then an alpha particle irradiation experiment and fault injection were applied to evaluate the SEE of the CNN system. Various types of soft errors in the CNN system have been detected, and the SEE cross sections have been calculated. Furthermore, the mechanisms behind some soft errors have been explained. This research will provide technical support for the design of radiation-resistant artificial intelligence chips. 展开更多
关键词 single event effects convolutional neural networks alpha particle system on chip fault injection
下载PDF
Metal-organic framework-based single-atom electro-/ photocatalysts: Synthesis, energy applications, and opportunities
2
作者 Munir Ahmad Jiahui Chen +10 位作者 Jianwen Liu Yan Zhang Zhongxin Song Shahzad Afzal Waseem Raza Liaqat Zeb Andleeb Mehmood Arshad Hussain Jiujun Zhang Xian-Zhu Fu Jing-Li Luo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期1-43,共43页
Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further de... Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further development.In the last few years,metal–organic frameworks(MOFs)have received significant consideration as ideal candidates for synthesizing SACs due to their tailorable chemistry,tunable morphologies,high porosity,and chemical/thermal stability.From this perspective,this review thoroughly summarizes the previously reported methods and possible future approaches for constructing MOF-based(MOF-derived-supported and MOF-supported)SACs.Then,MOF-based SAC's identification techniques are briefly assessed to understand their coordination environments,local electronic structures,spatial distributions,and catalytic/electrochemical reaction mechanisms.This review systematically highlights several photocatalytic and electrocatalytic applications of MOF-based SACs for energy conversion and storage,including hydrogen evolution reactions,oxygen evolution reactions,O_(2)/CO_(2)/N_(2) reduction reactions,fuel cells,and rechargeable batteries.Some light is also shed on the future development of this highly exciting field by highlighting the advantages and limitations of MOF-based SACs. 展开更多
关键词 carbon energy generation MOF-derived-supported MOF-supported single atoms
下载PDF
Single-atom photo-catalysts:Synthesis,characterization,and applications
3
作者 Siqi Li Ziwang Kan +4 位作者 He Wang Jiaxiao Bai Yunyi Liu Song Liu Yingjie Wu 《Nano Materials Science》 EI CAS CSCD 2024年第3期284-304,共21页
Single-atom catalysts(SACs)are gaining popularity in catalytic reactions due to their nearly 100%atomic utilization and defined active sites,which provide great convenience for studying the catalytic mechanism of cata... Single-atom catalysts(SACs)are gaining popularity in catalytic reactions due to their nearly 100%atomic utilization and defined active sites,which provide great convenience for studying the catalytic mechanism of catalysts.However,SACs still present challenges such as complex formation processes,low loading and easy agglomeration of catalysts.Herein,we systematically discuss the synthesis methods for SACs,including coprecipitation,impregnation,atomic layer deposition,pyrolysis and Anti-Ostwald ripening etc.Various techniques for characterizing single-atom catalysts(SACs)are described in detail.The utilization of individual atoms in various photocatalytic reactions and their mechanisms of action in different reactions are explained.The purpose of this review is to introduce single-atom synthesis methods,characterization techniques,specific catalytic action and their applications in the direction of photocatalysis,and to provide a reference for the industrialization of photocatalytic single-atoms,which is currently impossible,in the hope of promoting further development of photocatalytic single-atoms. 展开更多
关键词 PHOTOCATALYSIS single atom Catalytic mechanism
下载PDF
Cooperation between single atom catalyst and support to promote nitrogen electroreduction to ammonia:A theoretical insight
4
作者 Wanying Guo Siyao Wang +2 位作者 Hongxia Wang Qinghai Cai Jingxiang Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期336-344,共9页
The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing mul... The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing multiple intermediates and pathways.Herein,we utilized defective BC_(3)monolayer-supported SACs as a prototype to investigate the cooperative effects of SACs and their support on the catalytic performance of the nitrogen reduction reaction(NRR)for ammonia(NH_(3))production.The results showed that these SACs can be firmly stabilized on these defective BC_(3)supports with high stability against aggregation.Furthermore,co-activation of the inert N_(2)reactant was observed in certain embedded SACs and their neighboring B atoms on certain BC3 sheets due to the noticeable charge transfer and significant N–N bond elongation.Our high-throughput screening revealed that the Mo/DV_(CC)and W/DV_(CC)exhibit superior NRR catalytic performance,characterized by a low limiting potential of−0.33 and−0.43 V,respectively,which can be further increased under acid conditions based on the constant potential method.Moreover,varying NRR catalytic activities can be attributed to the differences in the valence state of active sites.Remarkably,further microkinetic modeling analysis displayed that the turnover frequency of N_(2)–to–NH_(3)conversion on Mo/DV_(CC)is as large as 1.20×10^(−3)s^(−1)site^(−1) at 700 K and 100 bar,thus guaranteeing its ultra-fast reaction rate.Our results not only suggest promising advanced electrocatalysts for NRR but also offer an effective avenue to regulate the electrocatalytic performance via the co-catalytic metal–support interactions. 展开更多
关键词 CO-CATALYSIS single atom catalyst Nitrogen reduction DFT computations
下载PDF
Simplified quantitative analysis method and its application in the insitu synthesized copper-based azide chips
5
作者 Jie Ren Yunfeng Li +3 位作者 Mingyu Li Xingyu Wu Jiabao Wang Qingxuan Zeng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期309-316,共8页
Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ ... Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems. 展开更多
关键词 Copper-based azide chips SPECTROPHOTOMETRY Separation method Quantitative analysis Ignition ability
下载PDF
Enhancing thermodynamic stability of single-crystal Ni-rich cathode material via a synergistic dual-substitution strategy
6
作者 Jixue Shen Hui Li +6 位作者 Haoyu Qi Zhan Lin Zeheng Li Chuanbo Zheng Weitong Du Hao Chen Shanqing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期428-436,I0010,共10页
Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance ... Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance and safety performance or thermal stability)will restrain their wide commercial application.Herein,a single-crystal Ni-rich Li Ni_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode material is synthesized and modified by a dual-substitution strategy in which the high-valence doping element improves the structural stability by forming strong metal–oxygen binding forces,while the low-valence doping element eliminates high Li^(+)/Ni^(2+)mixing.As a result,this synergistic dual substitution can effectively suppress H2-H3 phase transition and generation of microcracks,thereby ultimately improving the thermodynamic stability of Ni-rich cathode material.Notably,the dual-doped Ni-rich cathode delivers an extremely high capacity retention of 81%after 250 cycles(vs.Li/Li+)in coin-type half cells and 87%after 1000 cycles(vs.graphite/Li^(+))in pouch-type full cells at a high temperature of 55℃.More impressively,the dual-doped sample exhibits excellent thermal stability,which demonstrates a higher thermal runaway temperature and a lower calorific value.The synergetic effects of this dual-substitution strategy pave a new pathway for addressing the critical challenges of Ni-rich cathode at high temperatures,which will significantly advance the high-energy-density and high-safety cathodes to the subsequent commercialization. 展开更多
关键词 Ni-rich cathode single crystalline Dual-substitution strategy High-temperature cathode Li-ion batteries
下载PDF
Highly Sensitive Ammonia Gas Sensors at Room Temperature Based on the Catalytic Mechanism of N,C Coordinated Ni Single-Atom Active Center
7
作者 Wenjing Quan Jia Shi +10 位作者 Min Zeng Wen Lv Xiyu Chen Chao Fan Yongwei Zhang Zhou Liu Xiaolu Huang Jianhua Yang Nantao Hu Tao Wang Zhi Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期515-531,共17页
Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption prop... Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection.Specifically,Ni singleatom active sites based on N,C coordination(Ni-N-C)were interfacially confined on the surface of two-dimensional(2D)MXene nanosheets(Ni-N-C/Ti_(3)C_(2)Tx),and a fully flexible gas sensor(MNPE-Ni-N-C/Ti_(3)C_(2)Tx)was integrated.The sensor demonstrates a remarkable response value to 5 ppm NH3(27.3%),excellent selectivity for NH3,and a low theoretical detection limit of 12.1 ppb.Simulation analysis by density functional calculation reveals that the Ni single-atom center with N,C coordination exhibits specific targeted adsorption properties for NH3.Additionally,its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction,while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface.The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization,which facilitates efficient electron transfer to the 2D MXene conductive network,resulting in the formation of the NH3 gas molecule sensing signal.Furthermore,the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions.This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N,C coordination,which provides a novel gas sensing mechanism for room-temperature trace gas detection research. 展开更多
关键词 Gas sensor single atom Catalytic activation Targeted adsorption End-sealing passivation
下载PDF
Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification
8
作者 Shanni Cao Xue Zhao +6 位作者 Zhuojin Li Ranran Yu Yuqi Li Xinkai Zhou Wenhao Yan Dijun Chen Chao He 《Plant Diversity》 SCIE CAS CSCD 2024年第3期372-385,共14页
Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we... Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings.This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets,addressing batch effects and conserving biological variance.This integration spans a broad spectrum of tissues,including both below-and above-ground parts.Utilizing a rigorous approach for cell type annotation,we identified 47 distinct cell types or states,largely expanding our current view of plant cell compositions.We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression.Taken together,our study not only offers extensive plant cell atlas exploration that serves as a valuable resource,but also provides molecular insights into gene-regulatory programs that varies from different cell types. 展开更多
关键词 ARABIDOPSIS single cell transcriptome Gene regulatory network Data integration Plant cell atlas
下载PDF
Exploring the Roles of Single Atom in Hydrogen Peroxide Photosynthesis
9
作者 Kelin He Zimo Huang +3 位作者 Chao Chen Chuntian Qiu Yu Lin Zhong Qitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期32-67,共36页
This comprehensive review provides a deep exploration of the unique roles of single atom catalysts(SACs)in photocatalytic hydrogen peroxide(H_(2)O_(2))production.SACs offer multiple benefits over traditional catalysts... This comprehensive review provides a deep exploration of the unique roles of single atom catalysts(SACs)in photocatalytic hydrogen peroxide(H_(2)O_(2))production.SACs offer multiple benefits over traditional catalysts such as improved efficiency,selectivity,and flexibility due to their distinct electronic structure and unique properties.The review discusses the critical elements in the design of SACs,including the choice of metal atom,host material,and coordination environment,and how these elements impact the catalytic activity.The role of single atoms in photocatalytic H_(2)O_(2)production is also analysed,focusing on enhancing light absorption and charge generation,improving the migration and separation of charge carriers,and lowering the energy barrier of adsorption and activation of reactants.Despite these advantages,several challenges,including H_(2)O_(2)decomposition,stability of SACs,unclear mechanism,and low selectivity,need to be overcome.Looking towards the future,the review suggests promising research directions such as direct utilization of H_(2)O_(2),high-throughput synthesis and screening,the creation of dual active sites,and employing density functional theory for investigating the mechanisms of SACs in H_(2)O_(2)photosynthesis.This review provides valuable insights into the potential of single atom catalysts for advancing the field of photocatalytic H_(2)O_(2)production. 展开更多
关键词 single atom catalysts H_(2)O_(2)photosynthesis Catalyst design and optimization
下载PDF
Sensitivity study of the SiGe heterojunction bipolar transistor single event effect based on pulsed laser and technology computer-aided design simulation
10
作者 冯亚辉 郭红霞 +6 位作者 潘霄宇 张晋新 钟向丽 张鸿 琚安安 刘晔 欧阳晓平 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期420-428,共9页
The single event effect of a silicon–germanium heterojunction bipolar transistor(SiGe HBT) was thoroughly investigated. By considering the worst bias condition, the sensitive area of the proposed device was scanned w... The single event effect of a silicon–germanium heterojunction bipolar transistor(SiGe HBT) was thoroughly investigated. By considering the worst bias condition, the sensitive area of the proposed device was scanned with a pulsed laser.With variation of the collector bias and pulsed laser incident energy, the single event transient of the SiGe HBT was studied.Moreover, the single event transient produced by laser irradiation at a wavelength of 532 nm was more pronounced than at a wavelength of 1064 nm. Finally, the impact of the equivalent linear energy transfer of the 1064 nm pulsed laser on the single event transient was qualitatively examined by performing technology computer-aided design simulations, and a good consistency between the experimental data and the simulated outcomes was attained. 展开更多
关键词 SILICON-GERMANIUM heterojunction bipolar transistor pulsed laser single event effect equivalent linear energy transfer(LET)value
下载PDF
The Application of Multitasking Mechanism in Single Chip Computer System 被引量:1
11
作者 Yu Jin Huang Jiwu Yuan Lanying 《Wuhan University Journal of Natural Sciences》 CAS 1999年第1期59-62,共4页
Developed a new program structure using in single chip computer system, which based on multitasking mechanism. Discussed the specific method for realization of the new structure. The applied sample is also provided.
关键词 multitasking mechanism single chip computer system interruption mechanism
下载PDF
Exploring the Role of Serum Cystatin C in Early Detection of Acute Kidney Injury among On-Pump Cardiac Surgery Patients: A Single-Center Investigation in Bangladesh
12
作者 Md. Ahaduzzaman Md. Abir Tazim Chowdhury +8 位作者 Munama Magdum Md. Saiful Islam Khan Satyajit Sharma Monoj Tiwari Md. Abul Bashar Maruf Md. Alauddin Omar Sadeque Khan Md. Mostafizur Rahman Mirza Md. Nazmus Saquib 《World Journal of Cardiovascular Diseases》 CAS 2024年第6期363-373,共11页
Background: Acute Kidney Injury (AKI) stands as a prominent postoperative complication in on-pump cardiac surgery, with repercussions on morbidity, mortality, and hospitalization duration. Current diagnostic criteria ... Background: Acute Kidney Injury (AKI) stands as a prominent postoperative complication in on-pump cardiac surgery, with repercussions on morbidity, mortality, and hospitalization duration. Current diagnostic criteria relying on serum creatinine levels exhibit a delayed identification of AKI, prompting an exploration of alternative biomarkers. Aims and Objectives: This study is designed to overcome diagnostic constraints and explore the viability of serum Cystatin C as an early predictor of Acute Kidney Injury (AKI) in individuals undergoing on-pump cardiac surgery. The investigation aims to establish the relationship between serum Cystatin C levels and the onset of AKI in patients subjected to on-pump cardiac surgery. Primary objectives involve the assessment of the diagnostic effectiveness of serum Cystatin C, its comparison with serum creatinine, and the exploration of its potential for the early identification and treatment of AKI. Methodology: Conducted as a single-center study at the cardiac surgery department of BSMMU in Bangladesh from September 2020 to August 2022, a comparative cross-sectional analysis involved 31 participants categorized into No AKI and AKI groups based on Kidney Disease: Improving Global Outcomes (KDIGO) criteria. Data collection encompassed preoperative, post-CBP (cardiopulmonary bypass) conclusion at 2 hours, postoperative day 1, and postoperative day 2 intervals. Statistical analyses included Chi-squared tests, independent Student’s t-tests, and one-sample t-tests. Significance was set at P Results: The study revealed no significant differences in baseline characteristics between the No AKI and AKI groups, except for CPB time and cross-clamp time. Serum Cystatin C levels in the AKI group exhibited statistical significance at various time points, highlighting its potential as an early detector. Conversely, Serum Creatinine levels in the AKI group showed no statistical significance. The Receiver Operating Characteristic (ROC) curve analysis further supported the efficacy of serum Cystatin C, with an Area under the ROC Curve of 0.864 and a cut-off value of 0.55 (p Conclusion: This study supports the superior utility of serum Cystatin C as an early detector of AKI in on-pump cardiac surgery patients compared to serum creatinine. Its ability to identify AKI several hours earlier may contribute to reduced morbidity, mortality, and healthcare costs. The findings underscore the significance of exploring novel biomarkers for improved post-cardiac surgery renal function assessment. 展开更多
关键词 Acute Kidney Injury (AKI) On-Pump Cardiac Surgery Serum Cystatin C Serum Creatinine Diagnostic Biomarkers Early Detection Cardiopulmonary Bypass single-Center Study BANGLADESH
下载PDF
CHIP相关基因与MPN患者心脑血管事件的风险分析
13
作者 韩雪 白贝贝 +2 位作者 冯翠翠 赵森 陈烨 《中国实验血液学杂志》 CSCD 北大核心 2024年第1期190-196,共7页
目的:分析骨髓增殖性肿瘤(MPN)患者不确定潜能的克隆性造血(CHIP)相关基因突变谱和临床特征,探讨CHIP相关基因与其心脑血管事件(CCE)的相关性及可能作用机制。方法:回顾性分析2019年8月-2022年7月首都医科大学附属北京安贞医院血液科收... 目的:分析骨髓增殖性肿瘤(MPN)患者不确定潜能的克隆性造血(CHIP)相关基因突变谱和临床特征,探讨CHIP相关基因与其心脑血管事件(CCE)的相关性及可能作用机制。方法:回顾性分析2019年8月-2022年7月首都医科大学附属北京安贞医院血液科收治的73例MPN患者的临床资料和二代测序结果,采用Logistic回归分析CHIP相关基因、炎症细胞因子对MPN患者CCE的影响。结果:55例(75.3%)MPN患者检出CHIP相关基因,原发性血小板增多症(ET)和真性红细胞增多症(PV)患者CHIP相关基因各突变频率差异无统计学意义。CHIP相关基因突变以单基因形式为主,检出率从高至低依次为JAK2V617F(63.0%,46/73)、ASXL1(16.4%,12/73)、TET2(11.0%,8/73)、DNMT3A(9.6%,7/73)、SRSF2(6.9%,5/73)、SF3B1(4.1%,3/73)、TP53(1.4%,1/73)和PPMID(1.4%,1/73)。年龄>60岁患者CHIP相关基因检出率明显高于≤60岁者[91.7%(33/36)vs 59.5%(22/37)]。27例(37.0%)MPN患者伴CCE(MPN/CCE),2次CCE者5例,均为动脉事件。CCE组患者年龄(62.8±12.8 vs 53.9±15.8岁,P=0.015)、IL-1β水平(17.7±26.0vs 4.3±8.6,P=0.012)、IL-8水平(360.7±598.6 vs 108.3±317.0,P=0.045)、血栓形成史(29.6%vs 2.2%,P=0.020)和CHIP相关基因检出率(88.9%vs 67.4%,P=0.040)高于无CCE组。多因素Logistic回归分析结果显示,年龄(OR=0.917,95%CI:0.843-0.999,P=0.047)、血栓形成史(OR=34.148,95%CI:2.392-487.535,P=0.009)、任何1个CHIP相关基因突变(OR=16.065,95%CI:1.217-212.024,P=0.035)和IL-1β水平升高(OR=0.929,95%CI:0.870-0.992,P=0.027)均是MPN/CCE的独立危险因素;CHIP相关单基因突变与MPN/CCE无关,但DNMT3A(OR=88.717,95%CI:2.690-292.482,P=0.012)、ASXL1(OR=7.941,95%CI:1.045-60.353,P=0.045)突变是PV/CCE的独立危险因素。结论:MPN患者CHIP相关基因突变率高,尤其是60岁以上患者;高龄、血栓形成史、CHIP相关基因突变和IL-1β水平升高是MPN发生CCE的独立危险因素。DNMT3A、ASXL1单基因突变是PV患者CCE的独立危险因素。CHIP相关基因突变及炎症细胞因子IL-1β升高是MPN新的CCE危险因素。 展开更多
关键词 骨髓增殖性肿瘤 chip相关基因 心脑血管事件 炎症细胞因子
下载PDF
Design of DC regulated power supply based on single chip microcomputer
14
作者 轩春青 于景茹 +1 位作者 轩志伟 高静 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第4期373-377,共5页
A DC regulated power supply with numerical control based on single chip microcomputer (SCM) is designed. SCM is the main controller and output voltage o{ DC power supply can be set by keyboard. The analog voltage ca... A DC regulated power supply with numerical control based on single chip microcomputer (SCM) is designed. SCM is the main controller and output voltage o{ DC power supply can be set by keyboard. The analog voltage can be obtained through D/A converter (DAC0832) so that different voltages can be provided by operational amplifier. The output voltage varies from 0 V to 12 V with the incremental value of 0. 1 V. The actual output voltage is shown in the nixietube. This DC regulated power supply is characterized by simple structure and easy operation. 展开更多
关键词 DC regulated power suppy single chip microcomputer (SCM) D/A converter
下载PDF
替普瑞酮通过E3泛素连接酶CHIP减轻LPS引起的心肌炎症反应和心功能障碍
15
作者 徐丽婷 刘颖文 +8 位作者 李健玲 林婉 王淼 余蕾 张雪 李航 王华东 吕秀秀 王一阳 《中国病理生理杂志》 CAS CSCD 北大核心 2024年第5期862-871,共10页
目的:探究替普瑞酮又称香叶基香叶基丙酮,GGA)对脂多糖(LPS)诱导的心功能障碍的治疗作用及机制。方法:(1)取8周龄C57BL/6雄性野生型小鼠和热休克蛋白70(HSP70)羧基末端相互作用蛋白(CHIP)基因敲除小鼠,随机分为对照组、LPS组、LPS+GGA组... 目的:探究替普瑞酮又称香叶基香叶基丙酮,GGA)对脂多糖(LPS)诱导的心功能障碍的治疗作用及机制。方法:(1)取8周龄C57BL/6雄性野生型小鼠和热休克蛋白70(HSP70)羧基末端相互作用蛋白(CHIP)基因敲除小鼠,随机分为对照组、LPS组、LPS+GGA组和GGA组,每组8只。用腹腔注射LPS(25 mg/kg)的方法建立模型,于LPS刺激后1 h给予小鼠腹腔注射GGA(100 mg/kg)。利用小动物超声系统评估小鼠心脏功能;采集各组小鼠血清,检测血清肌酸激酶同工酶(CK-MB)和乳酸脱氢酶(LDH)水平;HE染色观察病理学改变;ELISA检测心脏组织中炎症因子肿瘤坏死因子α(TNF-α)和白细胞介素6(IL-6)的水平;Western blot检测各组心脏组织HSP70、CHIP、核转运蛋白α2(KPNA2)、髓过氧化物酶(MPO)、血管细胞黏附分子(VCAM)和细胞间黏附分子(ICAM)的蛋白表达以及细胞核NF-κB的水平。(2)利用小鼠心肌细胞HL-1,建立LPS刺激的离体细胞炎症模型。ELISA检测细胞上清中TNF-α和IL-6的水平;Western blot检测心肌细胞中HSP70、CHIP和KPNA2蛋白表达;免疫荧光染色观察细胞核NF-κB的表达。结果:(1)GGA有效改善LPS刺激小鼠的心脏功能,显著提高射血分数和左室短轴缩短率(P<0.01),减少血清CK-MB和LDH含量(P<0.01),减轻心肌损伤。(2)GGA显著减少LPS引起的TNF-α和IL-6炎症因子的释放(P<0.01),以及NF-κB的入核,降低心肌组织中KPNA2、MPO、VCAM和ICAM蛋白表达,增加心肌组织和细胞HSP70的水平(P<0.01)。(3)在CHIP基因敲除的心肌细胞和小鼠中,GGA不能抑制LPS引起的炎症反应,失去了改善LPS刺激小鼠心脏功能的作用。结论:GGA能够减轻LPS引起的心功能障碍,其作用机制与升高HSP70的表达,促进CHIP的活化,减少NF-κB的入核,抑制炎症因子的释放有关。CHIP的敲除使GGA丧失了减轻LPS诱导的炎症反应和心肌损伤的作用。 展开更多
关键词 替普瑞酮 脂多糖 心功能障碍 chip蛋白 炎症
下载PDF
Single-cell transcriptomic dissection of the cellular and molecular events underlying the triclosan-induced liver fibrosis in mice 被引量:2
16
作者 Yun-Meng Bai Fan Yang +12 位作者 Piao Luo Lu-Lin Xie Jun-Hui Chen Yu-Dong Guan Hong-Chao Zhou Teng-Fei Xu Hui-Wen Hao Bing Chen Jia-Hui Zhao Cai-Ling Liang Ling-Yun Dai Qing-Shan Geng Ji-Gang Wang 《Military Medical Research》 SCIE CAS CSCD 2023年第5期599-619,共21页
Background: Triclosan [5-chloro-2-(2,4-dichlorophenoxy) phenol, TCS], a common antimicrobial additive in many personal care and health care products, is frequently detected in human blood and urine. Therefore, it has ... Background: Triclosan [5-chloro-2-(2,4-dichlorophenoxy) phenol, TCS], a common antimicrobial additive in many personal care and health care products, is frequently detected in human blood and urine. Therefore, it has been considered an emerging and potentially toxic pollutant in recent years. Long-term exposure to TCS has been suggested to exert endocrine disruption effects, and promote liver fibrogenesis and tumorigenesis. This study was aimed at clarifying the underlying cellular and molecular mechanisms of hepatotoxicity effect of TCS at the initiation stage.Methods: C57BL/6 mice were exposed to different dosages of TCS for 2 weeks and the organ toxicity was evaluated by various measurements including complete blood count, histological analysis and TCS quantification. Single cell RNA sequencing(scRNA-seq) was then carried out on TCS-or mock-treated mice livers to delineate the TCS-induced hepatotoxicity. The acquired single-cell transcriptomic data were analyzed from different aspects including differential gene expression, transcription factor(TF) regulatory network, pseudotime trajectory, and cellular communication, to systematically dissect the cellular and molecular events after TCS exposure. To verify the TCS-induced liver fibrosis,the expression levels of key fibrogenic proteins were examined by Western blotting, immunofluorescence, Masson’s trichrome and Sirius red stainings. In addition, normal hepatocyte cell MIHA and hepatic stellate cell LX-2 were used as in vitro cell models to experimentally validate the effects of TCS by immunological, proteomic and metabolomic technologies.Results: We established a relatively short term TCS exposure murine model and found the TCS mainly accumulated in the liver. The scRNA-seq performed on the livers of the TCS-treated and control groups profiled the gene expressions of > 76,000 cells belonging to 13 major cell types. Among these types, hepatocytes and hepatic stellate cells(HSCs)were significantly increased in TCS-treated group. We found that TCS promoted fibrosis-associated proliferation of hepatocytes, in which Gata2 and Mef2c are the key driving TFs. Our data also suggested that TCS induced the proliferation and activation of HSCs, which was experimentally verified in both liver tissue and cell model. In addition,other changes including the dysfunction and capillarization of endothelial cells, an increase of fibrotic characteristics in B plasma cells, and M2 phenotype-skewing of macrophage cells, were also deduced from the scRNA-seq analysis, and these changes are likely to contribute to the progression of liver fibrosis. Lastly, the key differential ligand-receptor pairs involved in cellular communications were identified and we confirmed the role of GAS6_AXL interactionmediated cellular communication in promoting liver fibrosis.Conclusions: TCS modulates the cellular activities and fates of several specific cell types(including hepatocytes, HSCs,endothelial cells, B cells, Kupffer cells and liver capsular macrophages) in the liver, and regulates the ligand-receptor interactions between these cells, thereby promoting the proliferation and activation of HSCs, leading to liver fibrosis.Overall, we provide the first comprehensive single-cell atlas of mice livers in response to TCS and delineate the key cellular and molecular processes involved in TCS-induced hepatotoxicity and fibrosis. 展开更多
关键词 TRICLOSAN single cell RNA sequencing Liver fibrogenesis Hepatic stellate cell
下载PDF
Assessments of the effects of various fracture surface morphology on single fracture flow: A review 被引量:2
17
作者 Min Gao Chengguo Zhang Joung Oh 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第1期1-29,共29页
Natural rock joint permeability deviates from the classic fluid flow governing equations due to the inher-ent fracture surface roughness(i.e.,contact points,spatial correlation,matching,varying aperture,iso-lated void... Natural rock joint permeability deviates from the classic fluid flow governing equations due to the inher-ent fracture surface roughness(i.e.,contact points,spatial correlation,matching,varying aperture,iso-lated voids,infilling material,tortuosity and channellings)and engineering disturbance such as excavations.To improve the accuracy of fracture permeability evaluation,many efforts have been made in analytical,experimental,and numerical methods.This study reviews the modified mathematical gov-erning equations of fluid flow and classifies them based on different influencing factors,such as friction factor,aperture,tortuosity,inertia,and various in situ stress effects.Various experimental and simulation techniques for the coupled normal-and shear-stress flow problems were assessed,and their advantages and disadvantages were also analysed.Furthermore,different surface roughness descriptions and their impacts on mechanical and hydraulic behaviours were discussed,followed by the potential research directions for fracture flow problems. 展开更多
关键词 Surface roughness single fracture Nonlinear flow Coupled hydromechanical(HM)behaviours
下载PDF
COF-based single Li^(+)solid electrolyte accelerates the ion diffusionandrestrains dendritegrowthin quasi-solid-state organic batteries 被引量:2
18
作者 Genfu Zhao Zhiyuan Mei +5 位作者 Lingyan Duan Qi An Yongxin Yang Conghui Zhang Xiaoping Tan Hong Guo 《Carbon Energy》 SCIE CSCD 2023年第2期171-183,共13页
A solid-state electrolyte(SSE),which is a solid ionic conductor and electroninsulating material,is known to play a crucial role in adapting a lithium metal anode to a high-capacity cathode in a solid-state battery.Amo... A solid-state electrolyte(SSE),which is a solid ionic conductor and electroninsulating material,is known to play a crucial role in adapting a lithium metal anode to a high-capacity cathode in a solid-state battery.Among the various SSEs,the single Li-ion conductor has advantages in terms of enhancing the ion conductivity,eliminating interfacial side reactions,and broadening the electrochemical window.Covalent organic frameworks(COFs)are optimal platforms for achieving single Li-ion conduction behavior because of wellordered one-dimensional channels and precise chemical modification features.Herein,we study in depth three types of Li-carboxylate COFs(denoted LiOOC-COFn,n=1,2,and 3)as single Li-ion conducting SSEs.Benefiting from well-ordered directional ion channels,the single Li-ion conductor LiOOC-COF3 shows an exceptional ion conductivity of 1.36×10^(-5) S cm^(-1) at room temperature and a high transference number of 0.91.Moreover,it shows excellent electrochemical performance with long-term cycling,high-capacity output,and no dendrites in the quasi-solid-state organic battery,with the organic small molecule cyclohexanehexone(C_(6)O_(6))as the cathode and the Li metal as the anode,and enables effectively avoiding dissolution of the organic electrode by the liquid electrolyte. 展开更多
关键词 covalent organic frameworks quasi-solid-state organic battery single Li-ion conductor solid-state electrolyte
下载PDF
Nickel single atom overcoordinated active sites to accelerate the electrochemical reaction kinetics for Li-S cathode 被引量:2
19
作者 Juan Zhu Xinyue Wang +13 位作者 Tian Ke Mingji Jia Biyu Jin Yuanyuan Li Qiwei Yang Lanhui Ren Yongyuan Ren Dangguo Cheng Jianguo Lu Xiang Gao Qinggang He Yang Hou Xiaoli Zhan Qinghua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期203-210,I0006,共9页
Lithium-sulfur(Li-S)batteries with high theoretical energy density are promising advanced energy storage devices.However,shuttling of dissolute lithium polysulfide(LiPSs)and sluggish conversion kinetics impede their a... Lithium-sulfur(Li-S)batteries with high theoretical energy density are promising advanced energy storage devices.However,shuttling of dissolute lithium polysulfide(LiPSs)and sluggish conversion kinetics impede their applications.Herein,single nickel(Ni)atoms on two-dimensional(2D)nitrogen(N)-doped carbon with Ni-N_(4)-O overcoordinated structure(SANi-N_(4)-O/NC)are prepared and firstly used as a sulfur host of Li-S batteries.Due to the efficient polysulfides traps and highly LiPSs conversion effect of SANi-N_(4)-O/NC,the electrochemical performance of Li-S batteries obviously improved.The batteries can well operate even under high sulfur loading(5.8 mg cm^(-2))and lean electrolyte(6.1μL mg^(-1))condition.Meanwhile,density functional theory(DFT)calculations demonstrate that Ni single atom’s active sites decrease the energy barriers of conversion reactions from Li_(2)S_(8)to Li2S due to the strong interaction between SANi-N_(4)-O/NC and LiPSs.Thus,the kinetic conversion of LiPSs was accelerated and the shuttle effect is suppressed on SANi-N_(4)-O/NC host.This study provides a new design strategy for a 2D structure with single-atom overcoordinated active sites to facilitate the fast kinetic conversion of LiPSs for Li-S cathode. 展开更多
关键词 Nickel single atom catalyst Ni-N_(4)-O sites 2D N-doped carbon Li-S batteries Shuttle effect
下载PDF
Single-cell RNA sequencing in cornea research:Insights into limbal stem cells and their niche regulation 被引量:1
20
作者 Di Sun Wei-Yun Shi Sheng-Qian Dou 《World Journal of Stem Cells》 SCIE 2023年第5期466-475,共10页
The corneal epithelium is composed of stratified squamous epithelial cells on the outer surface of the eye,which acts as a protective barrier and is critical for clear and stable vision.Its continuous renewal or wound... The corneal epithelium is composed of stratified squamous epithelial cells on the outer surface of the eye,which acts as a protective barrier and is critical for clear and stable vision.Its continuous renewal or wound healing depends on the proliferation and differentiation of limbal stem cells(LSCs),a cell population that resides at the limbus in a highly regulated niche.Dysfunction of LSCs or their niche can cause limbal stem cell deficiency,a disease that is manifested by failed epithelial wound healing or even blindness.Nevertheless,compared to stem cells in other tissues,little is known about the LSCs and their niche.With the advent of single-cell RNA sequencing,our understanding of LSC characteristics and their microenvironment has grown considerably.In this review,we summarized the current findings from single-cell studies in the field of cornea research and focused on important advancements driven by this technology,including the heterogeneity of the LSC population,novel LSC markers and regulation of the LSC niche,which will provide a reference for clinical issues such as corneal epithelial wound healing,ocular surface reconstruction and interventions for related diseases. 展开更多
关键词 CORNEA Limbal stem cells single cell RNA sequencing HETEROGENEITY Novel markers Niche regulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部