We utilize an electromagnetically induced transparency(EIT) of a three-level cascade system involving Rydberg state in a room-temperature cell, formed with a cesium 6 S_(1/2)–6 P_(3/2)–66 S_(1/2) scheme, to investig...We utilize an electromagnetically induced transparency(EIT) of a three-level cascade system involving Rydberg state in a room-temperature cell, formed with a cesium 6 S_(1/2)–6 P_(3/2)–66 S_(1/2) scheme, to investigate the Autler–Townes(AT)splitting resulting from a 15.21-GHz radio-frequency(RF) field that couples the |66 S_(1/2) → |65 P_(1/2) Rydberg transition.The radio-frequency electric field induced AT splitting, γAT, is defined as the peak-to-peak distance of an EIT-AT spectrum.The dependence of AT splitting γAT on the probe and coupling Rabi frequency, ?_p and ?_c, is investigated. It is found that the EIT-AT splitting strongly depends on the EIT linewidth that is related to the probe and coupling Rabi frequency in a weak RF-field regime. Using a narrow linewidth EIT spectrum would decrease the uncertainty of the RF field measurements.This work provides new experimental evidence for the theoretical framework in [J. Appl. Phys. 121, 233106(2017)].展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0304203)the National Natural Science Foundation of China(Grant Nos.61475090,61675123,61775124,and 11804202)+1 种基金the State Key Program of National Natural Science of China(Grant Nos.11434007 and61835007)the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(Grant No.IRT13076)
文摘We utilize an electromagnetically induced transparency(EIT) of a three-level cascade system involving Rydberg state in a room-temperature cell, formed with a cesium 6 S_(1/2)–6 P_(3/2)–66 S_(1/2) scheme, to investigate the Autler–Townes(AT)splitting resulting from a 15.21-GHz radio-frequency(RF) field that couples the |66 S_(1/2) → |65 P_(1/2) Rydberg transition.The radio-frequency electric field induced AT splitting, γAT, is defined as the peak-to-peak distance of an EIT-AT spectrum.The dependence of AT splitting γAT on the probe and coupling Rabi frequency, ?_p and ?_c, is investigated. It is found that the EIT-AT splitting strongly depends on the EIT linewidth that is related to the probe and coupling Rabi frequency in a weak RF-field regime. Using a narrow linewidth EIT spectrum would decrease the uncertainty of the RF field measurements.This work provides new experimental evidence for the theoretical framework in [J. Appl. Phys. 121, 233106(2017)].