The stable steady-state periodic responses of a belt-drive system with a one-way clutch are studied. For the first time, the dynamical system is investigated under dual excitations. The system is simultaneously excite...The stable steady-state periodic responses of a belt-drive system with a one-way clutch are studied. For the first time, the dynamical system is investigated under dual excitations. The system is simultaneously excited by the firing pulsations of the engine and the harmonic motion of the foundation. Nonlinear discrete-continuous equations are derived for coupling the transverse vibration of the belt spans and the rotations of the driving and driven pulleys and the accessory pulley. The nonlinear dynamics is studied under equal and multiple relations between the frequency of the fir- ing pulsations and the frequency of the foundation motion. Furthermore, translating belt spans are modeled as axially moving strings. A set of nonlinear piecewise ordinary differ- ential equations is achieved by using the Galerkin truncation. Under various relations between the excitation frequencies, the time histories of the dynamical system are numerically simulated based on the time discretization method. Further- more, the stable steady-state periodic response curves are calculated based on the frequency sweep. Moreover, the convergence of the Galerkin truncation is examined. Numer- ical results demonstrate that the one-way clutch reduces the resonance amplitude of the rotations of the driven pul- ley and the accessory pulley. On the other hand, numerical examples prove that the resonance areas of the belt spans are decreased by eliminating the torque-transmitting in the opposite direction. With the increasing amplitude of the foun- dation excitation, the damping effect of the one-way clutch will be reduced. Furthermore, as the amplitude of the firing pulsations of the engine increases, the jumping phenomena in steady-state response curves of the belt-drive system with or without a one-way clutch both occur.展开更多
Accurate simulation of water distillation system for oxygen-18(18O) isotope separation is necessary to guide industrial practice, since both deuterium(D) and oxygen-18 isotope get enriched and interfere with each othe...Accurate simulation of water distillation system for oxygen-18(18O) isotope separation is necessary to guide industrial practice, since both deuterium(D) and oxygen-18 isotope get enriched and interfere with each other. In the present work, steady-state and dynamic distillation models are established based on a classic method and a cascade distillation system with 5 towers is introduced to test the models. The theoretical expressions of separation factor αH/Dfor protium/deuterium and separation factor α^(16)O/^(18) O.for oxygen-16/oxygen-18 were derived,with the existence of deuterium and oxygen-18, respectively. The results of the steady-state simulation by the classical method proposed in the present work agreed well with the results of the lumping method. The dynamic process could be divided into 5 stages. Impressively, a peak value of product withdraw was observed before the final steady state, which was resulted from the change of ^(16)O/^(18) O separation factor and isotope distribution. An interesting low concentration zone in the towers of T2–T5 existed at the beginning of the dynamic process and it required industrial evidence.展开更多
The simulation of a control system for the longitudinal axis of the rotary or fixed-wing unmanned aerial vehicles(UAVs)is demonstrated in this study.The control unit includes design considerations of two controllers t...The simulation of a control system for the longitudinal axis of the rotary or fixed-wing unmanned aerial vehicles(UAVs)is demonstrated in this study.The control unit includes design considerations of two controllers to provide robust stability,tracking of the proposed linear dynamics,an adequate set of proportional-integral-derivative(PID)controller gains,and a minimal cost function.The PID control and linear quadratic regulator(LQR)with or without full-state-observer were evaluated.An optimal control system is assumed to provide fast rise and settling time,minimize overshoot,and eliminate the steady-state error.The effectiveness of this approach was verified by a linear model of the UAV aircraft in the semi-dynamic simulation platform of Matlab/Simulink,in which the open-loop system was assessed in terms of flight robustness and reference tracking.The experimental results show that the proposed controllers effectively improve the configuration of the control system of the plant,maintain the sustainability of the dynamic flight model stability,and diminish the flight controller errors.The LQR provides robust stability,but it is not optimal in the transient phase of particular plant output.The PID control system can adjust the controller’s gains for optimal hovering(or stable slow flight)and is especially useful for the tracking system.Finally,comparing aircraft stability using PID and LQR controllers shows that the latter has less overshoot and a shorter settling time;in addition,all proposed controllers can be practically deployed as one UAV’s system,which can be handled as an exemplary model of the UAV flight management system.展开更多
Combined with the tire dynamics theoretical model,a rapid test method to obtain tire lateral and longitudinal both steady-state and transient characteristics only based on the tire quasi-steady-state test results is p...Combined with the tire dynamics theoretical model,a rapid test method to obtain tire lateral and longitudinal both steady-state and transient characteristics only based on the tire quasi-steady-state test results is proposed.For steady state data extraction,the test time of the rapid test method is half that of the conventional test method.For transient tire characteristics the rapid test method omits the traditional tire test totally.At the mean time the accuracy of the two method is much closed.The rapid test method is explained theoretically and the test process is designed.The key parameters of tire are extracted and the comparison is made between rapid test and traditional test method.The result show that the identification accuracy based on the rapid test method is almost equal to the accuracy of the conventional one.Then,the heat generated during the rapid test method and that generated during the conventional test are calculated separately.The comparison shows that the heat generated during the rapid test is much smaller than the heat generated during the conventional test process.This benefits to the reduction of tire wear and the consistency of test results.Finally,it can be concluded that the fast test method can efficiently,accurately and energy-efficiently measure the steady-state and transient characteristics of the tire.展开更多
By means of composite quantum collision models,we study the entanglement dynamics of a bipartite system,i.e.,two qubits S1 and S2 interacting directly with an intermediate auxiliary qubit SA,while SA is in turn couple...By means of composite quantum collision models,we study the entanglement dynamics of a bipartite system,i.e.,two qubits S1 and S2 interacting directly with an intermediate auxiliary qubit SA,while SA is in turn coupled to a thermal reservoir.We are concerned with how the intracollisions of the reservoir qubits influence the entanglement dynamics.We show that even if the system is initially in the separated state,their entanglement can be generated due to the interaction between the qubits.In the long-time limit,the steady-state entanglement can be generated depending on the initial state of S1 and S2 and the environment temperature.We also study the dynamics of tripartite entanglement of the three qubits S1,S2,and SA when they are initially prepared in the GHZ state and separated state,respectively.For the GHZ initial state,the tripartite entanglement can be maintained for a long time when the collision strength between the environment qubits is sufficiently large.展开更多
A double-layered model predictive control(MPC), which is composed of a steady-state target calculation(SSTC)layer and a dynamic control layer, is a prevailing hierarchical structure in industrial process control. Base...A double-layered model predictive control(MPC), which is composed of a steady-state target calculation(SSTC)layer and a dynamic control layer, is a prevailing hierarchical structure in industrial process control. Based on the reason analysis of the dynamic controller infeasibility, an on-line constraints softening strategy is given. At first, a series of regions of attraction(ROA) of the dynamic controller is calculated according to the softened constraints;then a minimal ROA containing the current state is chosen and the corresponding softened constraint is adopted by the dynamic controller. Note that, the above measures are performed on-line because the centers of the above ROA are the steady-state targets calculated at each instant. The effectiveness of the presented strategy is illustrated through two examples.展开更多
In this paper by means of the exact analytic method [1], the general solution fordynamic response of nonhomogeneous beam with variable cross section is obtained un-der arbitrary resonant load and boundary conditions. ...In this paper by means of the exact analytic method [1], the general solution fordynamic response of nonhomogeneous beam with variable cross section is obtained un-der arbitrary resonant load and boundary conditions. The problem is reduced to solvea non-positive differential equation. Generally, it is not solved by variational method.By the present method, the general solution for this problem may be written as an ana-lytic form. Hence, it is convenient for structure optimizing problem. In this paper, itsconvergence is proved. Numerical examples are given at the end of the paper. which in-dicates satisfactory results can be obtained.展开更多
The brushless DC motor can be used in the marine electric propulsion system for its excellent control characteristics and large thrust. In order to estimate the operating performances of the brushless DC motor for the...The brushless DC motor can be used in the marine electric propulsion system for its excellent control characteristics and large thrust. In order to estimate the operating performances of the brushless DC motor for the high-power shipping during the design stage, the steady-state analysis is as important as the dynamic analysis generally. A mathematical model of the brushless DC propulsion motor is established according to the state-space method for the dynamic and steady-state performance analysis. The state-space mathematical model is a set of linear differential equations, so the steady-state currents of the armature windings can be gained directly by the symmetrical boundary conditions and the eigenvalues of the system matrix. The steady-state simulation results are compared with the dynamic ones to validate the correctness of this eigenvector method.展开更多
Due to the fact that a high share of renewable energy sources(RESs)are connected to high-voltage direct current(HVDC)sending-end AC power systems,the voltage and frequency regulation capabilities of HVDC sending-end A...Due to the fact that a high share of renewable energy sources(RESs)are connected to high-voltage direct current(HVDC)sending-end AC power systems,the voltage and frequency regulation capabilities of HVDC sending-end AC power systems have diminished.This has resulted in potential system operating problems such as overvoltage and overfrequency,which occur simultaneously when block faults exist in the HVDC link.In this study,a steady-state voltage security-constrained optimal frequency control method for weak HVDC sending-end AC power systems is proposed.The integrated virtual inertia control of RESs is employed for system frequency regulation.Additional dynamic reactive power compensation devices are utilized to control the voltage of all nodes meet voltage security constraints.Then,an optimization model that simultaneously considers the frequency and steady-state voltage security constraints for weak HVDC sending-end AC power systems is established.The optimal control scheme with the minimum total cost of generation tripping and additional dynamic reactive power compensation required is obtained through the optimization solution.Simulations are conducted on a modified IEEE 9-bus test system and practical Qing-Yu line commutated converter based HVDC(LCC-HVDC)sending-end AC power system to verify the effectiveness of the proposed method.展开更多
To improve the handling performance of a steer-by-wire (SBW) vehicle, a series of control logics are proposed. Firstly, an algorithm for enhancing the maneuvering in steady-state cornering is presented. On this basis,...To improve the handling performance of a steer-by-wire (SBW) vehicle, a series of control logics are proposed. Firstly, an algorithm for enhancing the maneuvering in steady-state cornering is presented. On this basis, two categories of control strategies are used to dynamically correct and compensate the transient state steering responses and vehicle behaviors. Simulator tests including subjective evaluations and virtual field tests are both conducted to make comprehensive investigations on the series of control logics. The subjective evaluations demonstrate that the SBW vehicle with a specifically selected value of steering sensitivity tends to be more desirable for driving than a conventional one in which a fixed steering ratio exists. The virtual field tests indicate that the control strategies for dynamical correction and compensation could effectively improve the handling per-formances of an SBW vehicle by reducing the work load of drivers, enhancing the track-holding performance, and improving steering response properties.展开更多
This study explored methods for improving the performance of Steady-State Visual Evoked Potential(SSVEP)-based Brain-Computer Interfaces(BCI), and introduced a new analytical method to quantitatively analyze and refle...This study explored methods for improving the performance of Steady-State Visual Evoked Potential(SSVEP)-based Brain-Computer Interfaces(BCI), and introduced a new analytical method to quantitatively analyze and reflect the characteristics of SSVEP. We focused on the effect of the pre-stimulation paradigm on the SSVEP dynamic models and the dynamic response process of SSVEP, and performed a comparative analysis of three pre-stimulus paradigms(black, gray, and white). Four dynamic models with different orders(second-and third-order)and with and without a zero point were used to fit the SSVEP envelope. The zero-pole analytical method was adopted to conduct quantitative analysis on the dynamic models, and the response characteristics of SSVEP were represented by zero-pole distribution characteristics. The results of this study indicated that the pre-stimulation paradigm affects the characteristics of SSVEP, and the dynamic models had good fitting abilities with SSVEPs under various types of pre-stimulation. Furthermore, the zero-pole characteristics of the models effectively characterize the damping coefficient, oscillation period, and other SSVEP characteristics. The comparison of zeros and poles indicated that the gray pre-stimulation condition corresponds to a lower damping coefficient, thus showing its potential to improve the performance of SSVEP-BCIs.展开更多
An approximate Fokker-Planck equation for the logistic growth model which is driven by coloured correlated noises is derived by applying the Novikov theorem and the Fox approximation. The steady-state probability dist...An approximate Fokker-Planck equation for the logistic growth model which is driven by coloured correlated noises is derived by applying the Novikov theorem and the Fox approximation. The steady-state probability distribution (SPD) and the mean of the tumour cell number are analysed. It is found that the SPD is the single extremum configuration when the degree of correlation between the multiplicative and additive noises, λ is in -1 〈λ≤0 and can be the double extrema in 0〈λ〈1. A configuration transition occurs because of the variation of noise parameters. A minimum appears in the curve of the mean of the steady-state tumour cell number, (x), versus λ The position and the value of the minimum are controlled by the noise-correlated times.展开更多
In the procedure of the steady-state hierarchical optimization with feedback for large-scale industrial processes, a sequence of set-point changes with different magnitudes is carried out on the optimization layer. To...In the procedure of the steady-state hierarchical optimization with feedback for large-scale industrial processes, a sequence of set-point changes with different magnitudes is carried out on the optimization layer. To improve the dynamic performance of transient response driven by the set-point changes, a filter-based iterative learning control strategy is proposed. In the proposed updating law, a local-symmetric-integral operator is adopted for eliminating the measurement noise of output information,a set of desired trajectories are specified according to the set-point changes sequence, the current control input is iteratively achieved by utilizing smoothed output error to modify its control input at previous iteration, to which the amplified coefficients related to the different magnitudes of set-point changes are introduced. The convergence of the algorithm is conducted by incorporating frequency-domain technique into time-domain analysis. Numerical simulation demonstrates the effectiveness of the proposed strategy,展开更多
In this article,the progress of marine geographic information system(MGIS) in China during 2006?2010 is reviewed with emphases on generic MGIS,advanced MGIS and MGIS-based applications.Generic MGIS can be divided into...In this article,the progress of marine geographic information system(MGIS) in China during 2006?2010 is reviewed with emphases on generic MGIS,advanced MGIS and MGIS-based applications.Generic MGIS can be divided into two categories:data-oriented MGIS and user-oriented MGIS,recent achievements of which by Chinese researchers are summarized respectively.Advanced MGIS mainly involves the establishment of 3D virtual marine environment and 'Digital Ocean'.An overview of the 3D MGIS based simulations in the context of ocean phenomena,ocean engineering and ocean battlefield is also presented.Several sug-gestions for future development of MGIS in China are proposed,and trends of development are addressed.展开更多
This paper focuses on the dynamic control of distillation column with side reactors(SRC) for methyl acetate production. To obtain the optimum integrated structure and steady state simulation, the systematic design app...This paper focuses on the dynamic control of distillation column with side reactors(SRC) for methyl acetate production. To obtain the optimum integrated structure and steady state simulation, the systematic design approach based on the concept of independent reaction amount is applied to the process of SRC for methyl acetate production. In addition to the basic control loops, multi-variable model predictive control modular with methyl acetate concentration and temperature of sensitive plate is designed. Then, based on process simulation software Aspen Plus, dynamic simulation of SRC for methyl acetate production is used to verify the effectiveness of the control scheme.展开更多
In this paper,we investigate a deteriorating system with single vacation of a repairman.The system is described by infinite differential-integral equations with boundary conditions.Firstly,by using functional analysis...In this paper,we investigate a deteriorating system with single vacation of a repairman.The system is described by infinite differential-integral equations with boundary conditions.Firstly,by using functional analysis methods,especially linear operator’s C;-semigroup theory,we prove the well-posedness of the system and the existence of a unique positive dynamic solution that satisfies probability condition.Next,by analyzing the spectral properties of the system operator,we prove that all points on the imaginary axis except zero belong to the resolvent set of the system operator.Lastly,we prove that zero is not an eigenvalue of the system operator,which implies that the steady-state solution of the system does not exist.展开更多
Molecalar dynamics simulation is applied to investigate the microstructure evolution of magnesium single crystals under c-axis extension at different temperatures. At low temperatures, both {1012} and {1011} twins are...Molecalar dynamics simulation is applied to investigate the microstructure evolution of magnesium single crystals under c-axis extension at different temperatures. At low temperatures, both {1012} and {1011} twins are observed. At elevated temperatures, {1011} twining decreases quickly with increasing temperature, while the amount of {1012} twins increases. The (1012} twin is found to be the main deformation mechanism under the c-axis tension in the magnesium single crystal. Meanwhile, shear bands are also observed during deformation. When the temperature is beyond 500 K, the non-basal plane slip due to the thermal .activation is found. The stress-strain curves related with deformation behavior at atomistic scale are presented.展开更多
We propose a scheme for generating an entangled state for three atoms trapped in separate optical cavities that are coupled to each other through two optical fibers based on coherent driving and dissi- pation, which a...We propose a scheme for generating an entangled state for three atoms trapped in separate optical cavities that are coupled to each other through two optical fibers based on coherent driving and dissi- pation, which are induced by the classical fields and the decay of non-local bosonic modes, respectively. In our scheme, the interaction time need not be controlled strictly in the overall dynamics process, and the cavity field decay can be changed into a vital resource. The numerical simulation shows that the fidelity of the target state is insensitive to atomic spontaneous emission, and our scheme is good enough to generate the W state of distant atoms with a high fidelity and purity. In addition, the present scheme can also be generalized to prepare the N-partite W state of distant atoms.展开更多
This paper is devoted to studying the uniqueness and existence of the system dynamic solution by using C0-semigroup theory and discussing its exponential stability by analyzing the spectrul distribution of system oper...This paper is devoted to studying the uniqueness and existence of the system dynamic solution by using C0-semigroup theory and discussing its exponential stability by analyzing the spectrul distribution of system operator and its quasi-compactness. Some primary reliability indices are discussed with the eigenfunction of system operator and the optimal vacation time to get the maximum system profit is analyzed at the end of paper.展开更多
We consider a reaction-diffusion model which describes the spatial Wolbachia spread dynamics for a mixed population of infected and uninfected mosquitoes. By using linearization method, comparison principle and Leray-...We consider a reaction-diffusion model which describes the spatial Wolbachia spread dynamics for a mixed population of infected and uninfected mosquitoes. By using linearization method, comparison principle and Leray-Schauder degree theory, we investigate the influence of diffusion on the Wolbachia infection dynamics.After identifying the system parameter regions in which diffusion alters the local stability of constant steadystates, we find sufficient conditions under which the system possesses inhomogeneous steady-states. Surprisingly,our mathematical analysis, with the help of numerical simulations, indicates that diffusion is able to lower the threshold value of the infection frequency over which Wolbachia can invade the whole population.展开更多
基金project was supported by the State Key Program of the National Natural Science Foundation of China(Grant 11232009)the National Natural Science Foundation of China(Grants 11372171,11422214)
文摘The stable steady-state periodic responses of a belt-drive system with a one-way clutch are studied. For the first time, the dynamical system is investigated under dual excitations. The system is simultaneously excited by the firing pulsations of the engine and the harmonic motion of the foundation. Nonlinear discrete-continuous equations are derived for coupling the transverse vibration of the belt spans and the rotations of the driving and driven pulleys and the accessory pulley. The nonlinear dynamics is studied under equal and multiple relations between the frequency of the fir- ing pulsations and the frequency of the foundation motion. Furthermore, translating belt spans are modeled as axially moving strings. A set of nonlinear piecewise ordinary differ- ential equations is achieved by using the Galerkin truncation. Under various relations between the excitation frequencies, the time histories of the dynamical system are numerically simulated based on the time discretization method. Further- more, the stable steady-state periodic response curves are calculated based on the frequency sweep. Moreover, the convergence of the Galerkin truncation is examined. Numer- ical results demonstrate that the one-way clutch reduces the resonance amplitude of the rotations of the driven pul- ley and the accessory pulley. On the other hand, numerical examples prove that the resonance areas of the belt spans are decreased by eliminating the torque-transmitting in the opposite direction. With the increasing amplitude of the foun- dation excitation, the damping effect of the one-way clutch will be reduced. Furthermore, as the amplitude of the firing pulsations of the engine increases, the jumping phenomena in steady-state response curves of the belt-drive system with or without a one-way clutch both occur.
基金Supported by the Jiangsu Province Transformation of Sci-tech Achievements Project(BA2012080)
文摘Accurate simulation of water distillation system for oxygen-18(18O) isotope separation is necessary to guide industrial practice, since both deuterium(D) and oxygen-18 isotope get enriched and interfere with each other. In the present work, steady-state and dynamic distillation models are established based on a classic method and a cascade distillation system with 5 towers is introduced to test the models. The theoretical expressions of separation factor αH/Dfor protium/deuterium and separation factor α^(16)O/^(18) O.for oxygen-16/oxygen-18 were derived,with the existence of deuterium and oxygen-18, respectively. The results of the steady-state simulation by the classical method proposed in the present work agreed well with the results of the lumping method. The dynamic process could be divided into 5 stages. Impressively, a peak value of product withdraw was observed before the final steady state, which was resulted from the change of ^(16)O/^(18) O separation factor and isotope distribution. An interesting low concentration zone in the towers of T2–T5 existed at the beginning of the dynamic process and it required industrial evidence.
文摘The simulation of a control system for the longitudinal axis of the rotary or fixed-wing unmanned aerial vehicles(UAVs)is demonstrated in this study.The control unit includes design considerations of two controllers to provide robust stability,tracking of the proposed linear dynamics,an adequate set of proportional-integral-derivative(PID)controller gains,and a minimal cost function.The PID control and linear quadratic regulator(LQR)with or without full-state-observer were evaluated.An optimal control system is assumed to provide fast rise and settling time,minimize overshoot,and eliminate the steady-state error.The effectiveness of this approach was verified by a linear model of the UAV aircraft in the semi-dynamic simulation platform of Matlab/Simulink,in which the open-loop system was assessed in terms of flight robustness and reference tracking.The experimental results show that the proposed controllers effectively improve the configuration of the control system of the plant,maintain the sustainability of the dynamic flight model stability,and diminish the flight controller errors.The LQR provides robust stability,but it is not optimal in the transient phase of particular plant output.The PID control system can adjust the controller’s gains for optimal hovering(or stable slow flight)and is especially useful for the tracking system.Finally,comparing aircraft stability using PID and LQR controllers shows that the latter has less overshoot and a shorter settling time;in addition,all proposed controllers can be practically deployed as one UAV’s system,which can be handled as an exemplary model of the UAV flight management system.
基金Supported by National Natural Science Foundation of China(Grant No.51775224).
文摘Combined with the tire dynamics theoretical model,a rapid test method to obtain tire lateral and longitudinal both steady-state and transient characteristics only based on the tire quasi-steady-state test results is proposed.For steady state data extraction,the test time of the rapid test method is half that of the conventional test method.For transient tire characteristics the rapid test method omits the traditional tire test totally.At the mean time the accuracy of the two method is much closed.The rapid test method is explained theoretically and the test process is designed.The key parameters of tire are extracted and the comparison is made between rapid test and traditional test method.The result show that the identification accuracy based on the rapid test method is almost equal to the accuracy of the conventional one.Then,the heat generated during the rapid test method and that generated during the conventional test are calculated separately.The comparison shows that the heat generated during the rapid test is much smaller than the heat generated during the conventional test process.This benefits to the reduction of tire wear and the consistency of test results.Finally,it can be concluded that the fast test method can efficiently,accurately and energy-efficiently measure the steady-state and transient characteristics of the tire.
基金National Natural Science Foundation of China(Grant Nos.61675115 and 11974209)the Taishan Scholar Project of Shandong Province of China(Grant No.tsqn201812059)the Shandong Provincial Natural Science Foundation of China(Grant No.ZR2016JL005).
文摘By means of composite quantum collision models,we study the entanglement dynamics of a bipartite system,i.e.,two qubits S1 and S2 interacting directly with an intermediate auxiliary qubit SA,while SA is in turn coupled to a thermal reservoir.We are concerned with how the intracollisions of the reservoir qubits influence the entanglement dynamics.We show that even if the system is initially in the separated state,their entanglement can be generated due to the interaction between the qubits.In the long-time limit,the steady-state entanglement can be generated depending on the initial state of S1 and S2 and the environment temperature.We also study the dynamics of tripartite entanglement of the three qubits S1,S2,and SA when they are initially prepared in the GHZ state and separated state,respectively.For the GHZ initial state,the tripartite entanglement can be maintained for a long time when the collision strength between the environment qubits is sufficiently large.
基金Supported by National Natural Science Foundation of China(61603295,61422303,21376077)the Development Fund for Shanghai Talents(H200-2R-15111)the Key Scientific and Technological Project of Shaanxi Province(2016GY-040)
文摘A double-layered model predictive control(MPC), which is composed of a steady-state target calculation(SSTC)layer and a dynamic control layer, is a prevailing hierarchical structure in industrial process control. Based on the reason analysis of the dynamic controller infeasibility, an on-line constraints softening strategy is given. At first, a series of regions of attraction(ROA) of the dynamic controller is calculated according to the softened constraints;then a minimal ROA containing the current state is chosen and the corresponding softened constraint is adopted by the dynamic controller. Note that, the above measures are performed on-line because the centers of the above ROA are the steady-state targets calculated at each instant. The effectiveness of the presented strategy is illustrated through two examples.
文摘In this paper by means of the exact analytic method [1], the general solution fordynamic response of nonhomogeneous beam with variable cross section is obtained un-der arbitrary resonant load and boundary conditions. The problem is reduced to solvea non-positive differential equation. Generally, it is not solved by variational method.By the present method, the general solution for this problem may be written as an ana-lytic form. Hence, it is convenient for structure optimizing problem. In this paper, itsconvergence is proved. Numerical examples are given at the end of the paper. which in-dicates satisfactory results can be obtained.
文摘The brushless DC motor can be used in the marine electric propulsion system for its excellent control characteristics and large thrust. In order to estimate the operating performances of the brushless DC motor for the high-power shipping during the design stage, the steady-state analysis is as important as the dynamic analysis generally. A mathematical model of the brushless DC propulsion motor is established according to the state-space method for the dynamic and steady-state performance analysis. The state-space mathematical model is a set of linear differential equations, so the steady-state currents of the armature windings can be gained directly by the symmetrical boundary conditions and the eigenvalues of the system matrix. The steady-state simulation results are compared with the dynamic ones to validate the correctness of this eigenvector method.
基金supported in part by the National Key R&D Program of China(No.2022YFB2402700)the Science and Technology Project of State Grid Corporation of China(No.52272222001J).
文摘Due to the fact that a high share of renewable energy sources(RESs)are connected to high-voltage direct current(HVDC)sending-end AC power systems,the voltage and frequency regulation capabilities of HVDC sending-end AC power systems have diminished.This has resulted in potential system operating problems such as overvoltage and overfrequency,which occur simultaneously when block faults exist in the HVDC link.In this study,a steady-state voltage security-constrained optimal frequency control method for weak HVDC sending-end AC power systems is proposed.The integrated virtual inertia control of RESs is employed for system frequency regulation.Additional dynamic reactive power compensation devices are utilized to control the voltage of all nodes meet voltage security constraints.Then,an optimization model that simultaneously considers the frequency and steady-state voltage security constraints for weak HVDC sending-end AC power systems is established.The optimal control scheme with the minimum total cost of generation tripping and additional dynamic reactive power compensation required is obtained through the optimization solution.Simulations are conducted on a modified IEEE 9-bus test system and practical Qing-Yu line commutated converter based HVDC(LCC-HVDC)sending-end AC power system to verify the effectiveness of the proposed method.
基金Project (Nos. 50475009 and 50775096) supported by the National Natural Science Foundation of China
文摘To improve the handling performance of a steer-by-wire (SBW) vehicle, a series of control logics are proposed. Firstly, an algorithm for enhancing the maneuvering in steady-state cornering is presented. On this basis, two categories of control strategies are used to dynamically correct and compensate the transient state steering responses and vehicle behaviors. Simulator tests including subjective evaluations and virtual field tests are both conducted to make comprehensive investigations on the series of control logics. The subjective evaluations demonstrate that the SBW vehicle with a specifically selected value of steering sensitivity tends to be more desirable for driving than a conventional one in which a fixed steering ratio exists. The virtual field tests indicate that the control strategies for dynamical correction and compensation could effectively improve the handling per-formances of an SBW vehicle by reducing the work load of drivers, enhancing the track-holding performance, and improving steering response properties.
基金supported by the Key Research and Development Program of Guangdong Province (No. 2018B030339001)the National Key Research and Development Program of China (No. 2017YFB1002505)the National Natural Science Foundation of China (No. 61431007)
文摘This study explored methods for improving the performance of Steady-State Visual Evoked Potential(SSVEP)-based Brain-Computer Interfaces(BCI), and introduced a new analytical method to quantitatively analyze and reflect the characteristics of SSVEP. We focused on the effect of the pre-stimulation paradigm on the SSVEP dynamic models and the dynamic response process of SSVEP, and performed a comparative analysis of three pre-stimulus paradigms(black, gray, and white). Four dynamic models with different orders(second-and third-order)and with and without a zero point were used to fit the SSVEP envelope. The zero-pole analytical method was adopted to conduct quantitative analysis on the dynamic models, and the response characteristics of SSVEP were represented by zero-pole distribution characteristics. The results of this study indicated that the pre-stimulation paradigm affects the characteristics of SSVEP, and the dynamic models had good fitting abilities with SSVEPs under various types of pre-stimulation. Furthermore, the zero-pole characteristics of the models effectively characterize the damping coefficient, oscillation period, and other SSVEP characteristics. The comparison of zeros and poles indicated that the gray pre-stimulation condition corresponds to a lower damping coefficient, thus showing its potential to improve the performance of SSVEP-BCIs.
基金Supported by the National Natural Science Foundation of China under Grant No 10275025, and the Key Project of Education Bureau of Hubei Province under Grant No Z200612001.
文摘An approximate Fokker-Planck equation for the logistic growth model which is driven by coloured correlated noises is derived by applying the Novikov theorem and the Fox approximation. The steady-state probability distribution (SPD) and the mean of the tumour cell number are analysed. It is found that the SPD is the single extremum configuration when the degree of correlation between the multiplicative and additive noises, λ is in -1 〈λ≤0 and can be the double extrema in 0〈λ〈1. A configuration transition occurs because of the variation of noise parameters. A minimum appears in the curve of the mean of the steady-state tumour cell number, (x), versus λ The position and the value of the minimum are controlled by the noise-correlated times.
基金This work was supported by the National Natural Science Foundation of China (No. 60274055)
文摘In the procedure of the steady-state hierarchical optimization with feedback for large-scale industrial processes, a sequence of set-point changes with different magnitudes is carried out on the optimization layer. To improve the dynamic performance of transient response driven by the set-point changes, a filter-based iterative learning control strategy is proposed. In the proposed updating law, a local-symmetric-integral operator is adopted for eliminating the measurement noise of output information,a set of desired trajectories are specified according to the set-point changes sequence, the current control input is iteratively achieved by utilizing smoothed output error to modify its control input at previous iteration, to which the amplified coefficients related to the different magnitudes of set-point changes are introduced. The convergence of the algorithm is conducted by incorporating frequency-domain technique into time-domain analysis. Numerical simulation demonstrates the effectiveness of the proposed strategy,
基金supported by the Natural Science Foundation of China under projects 40730530 and 41076115the National Basic Research Program of China under project 2009CB723903the National High-Tech Research and Development Program of China under project 2008AA121701
文摘In this article,the progress of marine geographic information system(MGIS) in China during 2006?2010 is reviewed with emphases on generic MGIS,advanced MGIS and MGIS-based applications.Generic MGIS can be divided into two categories:data-oriented MGIS and user-oriented MGIS,recent achievements of which by Chinese researchers are summarized respectively.Advanced MGIS mainly involves the establishment of 3D virtual marine environment and 'Digital Ocean'.An overview of the 3D MGIS based simulations in the context of ocean phenomena,ocean engineering and ocean battlefield is also presented.Several sug-gestions for future development of MGIS in China are proposed,and trends of development are addressed.
基金Supported by the National Natural Science Foundation of China(61673205,61503181,21727818)National Key R&D Program of China(2017YFB0307304)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20141461,BK20140953)the State Key Laboratory of Materials-Oriented Chemical Engineering Open Subject(kl16-07)
文摘This paper focuses on the dynamic control of distillation column with side reactors(SRC) for methyl acetate production. To obtain the optimum integrated structure and steady state simulation, the systematic design approach based on the concept of independent reaction amount is applied to the process of SRC for methyl acetate production. In addition to the basic control loops, multi-variable model predictive control modular with methyl acetate concentration and temperature of sensitive plate is designed. Then, based on process simulation software Aspen Plus, dynamic simulation of SRC for methyl acetate production is used to verify the effectiveness of the control scheme.
基金supported by the National Natural Science Foundation of China(No.11761066)。
文摘In this paper,we investigate a deteriorating system with single vacation of a repairman.The system is described by infinite differential-integral equations with boundary conditions.Firstly,by using functional analysis methods,especially linear operator’s C;-semigroup theory,we prove the well-posedness of the system and the existence of a unique positive dynamic solution that satisfies probability condition.Next,by analyzing the spectral properties of the system operator,we prove that all points on the imaginary axis except zero belong to the resolvent set of the system operator.Lastly,we prove that zero is not an eigenvalue of the system operator,which implies that the steady-state solution of the system does not exist.
基金supported by the National Natural Science Foundation of China (No.11072026)the Fundamental Research Funds for the Central Universities
文摘Molecalar dynamics simulation is applied to investigate the microstructure evolution of magnesium single crystals under c-axis extension at different temperatures. At low temperatures, both {1012} and {1011} twins are observed. At elevated temperatures, {1011} twining decreases quickly with increasing temperature, while the amount of {1012} twins increases. The (1012} twin is found to be the main deformation mechanism under the c-axis tension in the magnesium single crystal. Meanwhile, shear bands are also observed during deformation. When the temperature is beyond 500 K, the non-basal plane slip due to the thermal .activation is found. The stress-strain curves related with deformation behavior at atomistic scale are presented.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos. 11564041, 11747096, 11165015, 11264042, 11465020, and 61465013 the Project of Jilin Science and Technology Development for Lead- ing Talent of Science and Technology Innovation in Middle and Young and Team Project under Grant No. 20160519022JH+1 种基金 China Postdoctoral Science Foundation under Grant Nos. 2017M612411, 2018Tl10735 the Education Department Foundation of Henan Province under Grant No. 18A140009.
文摘We propose a scheme for generating an entangled state for three atoms trapped in separate optical cavities that are coupled to each other through two optical fibers based on coherent driving and dissi- pation, which are induced by the classical fields and the decay of non-local bosonic modes, respectively. In our scheme, the interaction time need not be controlled strictly in the overall dynamics process, and the cavity field decay can be changed into a vital resource. The numerical simulation shows that the fidelity of the target state is insensitive to atomic spontaneous emission, and our scheme is good enough to generate the W state of distant atoms with a high fidelity and purity. In addition, the present scheme can also be generalized to prepare the N-partite W state of distant atoms.
基金supported by the National Natural Science Foundation of China under Grant No.11001013
文摘This paper is devoted to studying the uniqueness and existence of the system dynamic solution by using C0-semigroup theory and discussing its exponential stability by analyzing the spectrul distribution of system operator and its quasi-compactness. Some primary reliability indices are discussed with the eigenfunction of system operator and the optimal vacation time to get the maximum system profit is analyzed at the end of paper.
基金supported by National Natural Science Foundation of China (Grant Nos. 11471085, 91230104 and 11301103)Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT1226)+1 种基金Program for Yangcheng Scholars in Guangzhou (Grant No. 12A003S)Guangdong Innovative Research Team Program (Grant No. 2011S009)
文摘We consider a reaction-diffusion model which describes the spatial Wolbachia spread dynamics for a mixed population of infected and uninfected mosquitoes. By using linearization method, comparison principle and Leray-Schauder degree theory, we investigate the influence of diffusion on the Wolbachia infection dynamics.After identifying the system parameter regions in which diffusion alters the local stability of constant steadystates, we find sufficient conditions under which the system possesses inhomogeneous steady-states. Surprisingly,our mathematical analysis, with the help of numerical simulations, indicates that diffusion is able to lower the threshold value of the infection frequency over which Wolbachia can invade the whole population.