In the Northern Jiangsu basin there are high pure CO2 gas pools, low condensed oil-containing CO2 gas pools, high condensed oil-containing CO2 gas pools and He-containing natural gas pools, with the δ13Cco2 (PDB) val...In the Northern Jiangsu basin there are high pure CO2 gas pools, low condensed oil-containing CO2 gas pools, high condensed oil-containing CO2 gas pools and He-containing natural gas pools, with the δ13Cco2 (PDB) values ranging from ?2.87%o to ?6.50%o, 3He/4He 3.71 × 10?6 to 6.42 × 10?6, R/Ra 2.64 to 4.5, 40Ar/36Ar 705 to 734, belonging to typical mantle source inorganic gas pools which are related to young magmatic activity. The gas layers occur in two major reservoir-caprock systems, the terrestrial Meso-Cenozoic clastic rock system and the marine Meso-Palaeozoic carbonate rock-clastic rock system. Controlled by the difference in the scale of traps in the two reservoir-caprock systems, large and medium-scale inorganic gas pools are formed in the marine Meso-Palaeozoic Group and only small ones are formed in the terrestrial Meso-Cenozoic strata. Inorganic gas pools in this basin are distributed along the two deep lithospheric faults on the west and south boundaries of the basin. Gas pools are developed at the intersected part of the ENE-trending faults that control the half graben and the E-W tenso-shear faults, mainly distributed near the Es1, Ny1 and Ny2-Q basalt eruption centres.展开更多
Conditions for the Formation of oil and gas pools in Tertiary volcanics in the western part of the Huimin sag, Shandong and then (?)stribution have been studied based on the geological, seismic and well-logging inform...Conditions for the Formation of oil and gas pools in Tertiary volcanics in the western part of the Huimin sag, Shandong and then (?)stribution have been studied based on the geological, seismic and well-logging information. In this paper, the types and lithofacies of the volcanic rocks in the western part of the Huimin sag are described; the relationship between rocks and electrical properties, the seismic reflection structures, the development and distribution of the volcanic rocks are expounded; and the fourfold role of the volcanic activities in the formation of the oil and gas pools is also dealt with. It is considered by the authors that the volcanic activities were not destructive to the formation of oil and gas pools but a factor favourable to the accumulation of organic matters and their conversion to hydrocarbon. The volcanic rocks might have served as reservoir rocks and cap rocks, or as a synsedimentary anticline. The prerequisites and important factors for the formation of oil and gas pools and their distribution are pointed out in the paper.展开更多
The Lower Triassic Jialingjiang Formation reservoirs are distributed widely in the East Sichuan Basin, which are composed mainly of fractured reservoirs. However, natural gas with high concentration of H2S, ranging fr...The Lower Triassic Jialingjiang Formation reservoirs are distributed widely in the East Sichuan Basin, which are composed mainly of fractured reservoirs. However, natural gas with high concentration of H2S, ranging from 4% to 7%, was discovered in the Wolonghe Gas pool consisting primarily of porous reservoirs, while the other over 20 fractured gas reservoirs have comparatively low, tiny and even no H2S within natural gases. Researches have proved the H2S of the above reservoirs are all from the TSR origin. Most of the Jialingjiang Formation natural gases are mainly generated from Lower Permian carbonate rocks, the Wolonghe gas pool's natural gases are from the Upper Permian Longtan Formation, and the natural gases of the Huangcaoxia and Fuchengzhai gas pools are all from Lower Silurian mudstone. The formation of H2S is controlled by the characteristics and temperature of reservoirs, and is not necessarily related with gas sources. The Jialingjiang Formation in East Sichuan is buried deeply and its reservoir temperature has ever attained the condition of the TSR reaction. Due to poor reservoir potential, most of the gas pools do not have enough room for hydrocarbon reaction except for the Wolonghe gas pool, and thus natural gases with high H2S concentration are difficult to be generated abundantly. The south part of East Sichuan did not generate natural gases with high H2S concentration because the reservoir was buried relatively shallow, and did not suffer high temperature. Hence, while predicting the distribution of H2S, the characteristics and temperature of reservoirs are the necessary factors to be considerd besides the existence of anhydrite.展开更多
Because of the difference ofoil and gas accumulation condition between the hanging wall and the footwall of a fault, there is a peculiar accumulation mechanism that oil and gas mainly exists in the hanging wall of the...Because of the difference ofoil and gas accumulation condition between the hanging wall and the footwall of a fault, there is a peculiar accumulation mechanism that oil and gas mainly exists in the hanging wall of the basement fault, but in the footwall of the shallow detachment fault in the Nanbaxian pool. The oil and gas of the Nanbaxian pool came from the mature Jurassic hydrocarbon source rock of the Yibei depression located at the south of the Nanbaxian pool. Firstly, the oil and gas accumulated in the traps of the hanging wall of the basement fault by way of the unconformity and the basement faults, and turned into some primary deep pools; and then, the shallow detachment fault that formed in the later tectonic movement broke into the deep primary pools, which caused the oil and gas migration upwards along the basement faults and the shallow detachment faults and the evolvement into some secondary oil and gas pools later. The history of the Nanbaxian oil and gas accumulation can be summarized successively as the syndepositional upheaval controlled by faults; single hydrocarbon source rock; unconformities and faults as migration channels; buoyancy, overpressure and tectonic stress as dynamic forces; multistage migration and accumulation of oil and gas; and finally an overlapped double-floor pattern of oil and gas accumulation. The most important explorative targets in the north of the Qaidam Basin are traps connected with the primary pools in the footwall by shallow detachment faults.展开更多
Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetime...Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates.展开更多
Presents penetration control by weld pool resonance which occurs when the natural frequency of weld pool is equal to the frequency of sine wave current while the weld pool is excited into oscillation by superimposing ...Presents penetration control by weld pool resonance which occurs when the natural frequency of weld pool is equal to the frequency of sine wave current while the weld pool is excited into oscillation by superimposing sine wave current with definite frequency or regular frequency on DC current, and experiments carried out on detecting resonance signals during both stationary and travelling arc welding with variant frequency pulse current, and concludes with experimental results that penetration control can be realized by weld pool resonance when welding speed is lower than 80mm/min, and this control method is applicable to welding thin (0.5~3.0 mm) plates of carbon steel, low alloy steel, high strength steel and superhigh strength steel, and suitable for alternating polarity welding of stainless steel, titanium alloy steel and aluminum alloy.展开更多
Hetianhe is a big carbonate gas field which isfound and demonstrated in the period of 'Chinese NationalNinth 5-Year Plan'. The proved reserve of Hetianhe gas fieldis over 600 ×10~8 m^3. Its main producing...Hetianhe is a big carbonate gas field which isfound and demonstrated in the period of 'Chinese NationalNinth 5-Year Plan'. The proved reserve of Hetianhe gas fieldis over 600 ×10~8 m^3. Its main producing layers are Carbon-iferous bioclastic limestone and Ordovician carbonate com-posed of buried hill. The former is stratified gas pool withwater around its side, and the latter is massive gas pool withwater in its bottom. The gases in the gas pools belong to drygases with normal temperature and pressure systems. Basedon the correlation of gas and source rock, the gases aremainly generated from Cambrian source rocks. According tothe researches on source rock and structure evolution, andthe observations on the thin section to reservoir bitumen andthe studies on homogenization temperature of fluid inclu-sions, the gas pool has been identified and divided into threeformation periods. The first is Late Caledonian when the oilgenerated from the Cambrian source rocks and migratedalong faults, as a form of liquid facies into Ordovician carbonate res-ervoir and accumulated there. After that, the crustuplifted, the oil reservoir had been destroyed. The second isLate Hercynian when condensate gases generated from theCambrian source rocks and migrated into Ordovician res-ervoir, as a form of liquid facies. Since the fractures hadreached P strata, so the trap might have a real poor preser-vation condition, and the large-scale gas pool formation hadnot happened. The third gas reservoir formation period oc-curred in Himalaya. The fractures on both sides of Hetianhegas field developed violently under the forces of compression,and thus the present fault horst formed. The dry gases gen-erated from Cambrian source rocks and migrated upwardsas the form of gas facies into Ordovician and Carboniferousreservoirs, and the large gas pool as discovered at presentwas formed finally.展开更多
The structural activities took place extensively in the Asia continent during the Cenozoic era owing to the strong continent-to-continent collision and continuous compression between the India Plate and the Eurasia Pl...The structural activities took place extensively in the Asia continent during the Cenozoic era owing to the strong continent-to-continent collision and continuous compression between the India Plate and the Eurasia Plate. Huang Jiqing called such structural activities Himalayan movement. China’s sedimentary basins developed and took shape mainly during the Himalayan movement period. It is also the main period for formation and development of the oil and gas reservoirs. Of 366 large and medium-sized oil and gas fields currently found in China, 212 reservoirs were formed in the Neo- gene-Quaternary period. The proportion is as high as 68.2%. The oil and gas migration and accumu- lation in the latest geological period, which were controlled by the times, properties, styles and strength of the Himalayan movement, took place mainly in eight regions, such as the low uplift area of Bohai Sea, the onshore faulted sag area of Bohai Bay, anticlinorium zone in Daqing, the foreland fold-and-thrust belt in West China, the tilted structural zone in West China, the cratonic palaeohigh in the Tarim Basin, the zone of fault and fold belt in the East Sichuan Basin, and the biological gas zone in the East Qaidam Basin. The oil and gas pool formations in those regions have their own charac- teristics. With the great potential and broad prospect, those regions are the main exploration areas in China in the future.展开更多
By using the methods of hydrocarbon generation kinetics and carbon isotope kinetics, combined with geological background of natural gas pool formation, the generation and accumulation of natural gas from Yinan 2 gas p...By using the methods of hydrocarbon generation kinetics and carbon isotope kinetics, combined with geological background of natural gas pool formation, the generation and accumulation of natural gas from Yinan 2 gas pool was studied in Kuqa Depression of the Tarim Basin. Natural gas of Yinan 2 gas pool is mainly derived from Middle and Lower Jurassic coal-bearing source rocks, and generally belongs to long time-accumulated gas. It is suggested that Yinan 2 gas is chiefly accumulated in the last 5 Ma, its Ro ranges from 1.25% to 1.95%, and the loss rate of natural gas is about 25%-30%. This work not only complements and reduces the deficiency of formation model of natural gas pools which traditionally depends on the matching relationships between source rock, reservoir, cap rock, and trap, but also is a useful reference in the study of other gas pools.展开更多
This article reports the main formation models and distribution of the oil and gas pools in Tarim basin, China, including (1) occurrence of the found oil and gas pools, (2) main formation models of oil and gas poo...This article reports the main formation models and distribution of the oil and gas pools in Tarim basin, China, including (1) occurrence of the found oil and gas pools, (2) main formation models of oil and gas pools, and (3) distribution law of oil/gas pools. Petroleum is distributed widely in the strata of Tarim basin from the Sinian at the bottom to the Neogene at the top. However, the found oil and gas fields are mainly distributed in Shaya (沙雅) uplift, Tazhong (塔中) uplift, and Kuche (库车) depression. This article presents 4 main formation models, namely, early formation and long-term preservation, early formation and late reformation, middle-late multiphase-multisource formation, late single-stage formation. Tarim basin is very rich in petroleum resources. Long-term inherited intrabasinal paleohighs and slope zones are the most favorable areas for accumulation of hydrocarbons, but the types of oil and gas pools are different from area to area. The control of unconformities and faults on hydrocarbon accumulating is prominent in Tarim basin. Preservation conditions are of utmost importance. Formation of some oil and gas pools is the result of reforming and re-accumulating of early accumulated hydrocarbons.展开更多
It is demonstrated by various geochemical indexes that the Zhengjia-Wangzhuang Oilfield with viscous crude oil in the Jiyang Depression has been sourced from the contribution of matured source rocks in the upper Es4. ...It is demonstrated by various geochemical indexes that the Zhengjia-Wangzhuang Oilfield with viscous crude oil in the Jiyang Depression has been sourced from the contribution of matured source rocks in the upper Es4. The principal cause leading to the densification of crude oils would be biodegradation, with the degradation level of crude oils being ranked as 2-8; vertically, the biodegradation level increases from the top to bottom of the oil column, with a distinctive biodegradation gradient occurring. Calculated parameters of sterane, terpane and methyl-phenanthrene have indicated that the source-rock’s maturity of crude oils and asphaltic sands ranges from 0.7 to 0.9, and based on the calculation of Easy Ro model, the temperature of hydrocarbon generation in the source rock would be within 120-140℃, which coincides with the measurements of reservoir inclusions. The measured homogenization temperature would represent the generation temperature of the source rock, and be fairly different from that展开更多
In this study, visualizations and experiments are carried out on the influence of static and rotating magnetic fields on the characteristics of HCFC-141b gas hydrate formation, such as crystallization form, formation ...In this study, visualizations and experiments are carried out on the influence of static and rotating magnetic fields on the characteristics of HCFC-141b gas hydrate formation, such as crystallization form, formation temperature and induction time. It has been found that a proper rotating magnetic field can considerably improve the low-pressure gas hydrate formation process, especially in increasing the formation temperature and shortening the induction time. The mor- phology of the gas hydrate formation appears rather complex and compact. However, a proper static magnetic field can make the gas hydrate crystal more organized, which will be benefit to heat transfer.展开更多
Direct cooling with inert,dielectric liquids may well become the technique of choice for the thermal manage- ment of future electronic systems.Due to the efficiency of phase-change processes and the simplicity of natu...Direct cooling with inert,dielectric liquids may well become the technique of choice for the thermal manage- ment of future electronic systems.Due to the efficiency of phase-change processes and the simplicity of natural circulation,nucleate pool boiling is of great interest for this application.This paper examines the characteristics of vapor bubbles and nucleate pool boiling of the dielectric liquids.The results provide a theoretical foundation for understanding and interpreting the often complex empirical results reported in the literature.展开更多
文摘In the Northern Jiangsu basin there are high pure CO2 gas pools, low condensed oil-containing CO2 gas pools, high condensed oil-containing CO2 gas pools and He-containing natural gas pools, with the δ13Cco2 (PDB) values ranging from ?2.87%o to ?6.50%o, 3He/4He 3.71 × 10?6 to 6.42 × 10?6, R/Ra 2.64 to 4.5, 40Ar/36Ar 705 to 734, belonging to typical mantle source inorganic gas pools which are related to young magmatic activity. The gas layers occur in two major reservoir-caprock systems, the terrestrial Meso-Cenozoic clastic rock system and the marine Meso-Palaeozoic carbonate rock-clastic rock system. Controlled by the difference in the scale of traps in the two reservoir-caprock systems, large and medium-scale inorganic gas pools are formed in the marine Meso-Palaeozoic Group and only small ones are formed in the terrestrial Meso-Cenozoic strata. Inorganic gas pools in this basin are distributed along the two deep lithospheric faults on the west and south boundaries of the basin. Gas pools are developed at the intersected part of the ENE-trending faults that control the half graben and the E-W tenso-shear faults, mainly distributed near the Es1, Ny1 and Ny2-Q basalt eruption centres.
文摘Conditions for the Formation of oil and gas pools in Tertiary volcanics in the western part of the Huimin sag, Shandong and then (?)stribution have been studied based on the geological, seismic and well-logging information. In this paper, the types and lithofacies of the volcanic rocks in the western part of the Huimin sag are described; the relationship between rocks and electrical properties, the seismic reflection structures, the development and distribution of the volcanic rocks are expounded; and the fourfold role of the volcanic activities in the formation of the oil and gas pools is also dealt with. It is considered by the authors that the volcanic activities were not destructive to the formation of oil and gas pools but a factor favourable to the accumulation of organic matters and their conversion to hydrocarbon. The volcanic rocks might have served as reservoir rocks and cap rocks, or as a synsedimentary anticline. The prerequisites and important factors for the formation of oil and gas pools and their distribution are pointed out in the paper.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 40602016)the National Key Basic Research and Development Planning Project (2006CB202307).
文摘The Lower Triassic Jialingjiang Formation reservoirs are distributed widely in the East Sichuan Basin, which are composed mainly of fractured reservoirs. However, natural gas with high concentration of H2S, ranging from 4% to 7%, was discovered in the Wolonghe Gas pool consisting primarily of porous reservoirs, while the other over 20 fractured gas reservoirs have comparatively low, tiny and even no H2S within natural gases. Researches have proved the H2S of the above reservoirs are all from the TSR origin. Most of the Jialingjiang Formation natural gases are mainly generated from Lower Permian carbonate rocks, the Wolonghe gas pool's natural gases are from the Upper Permian Longtan Formation, and the natural gases of the Huangcaoxia and Fuchengzhai gas pools are all from Lower Silurian mudstone. The formation of H2S is controlled by the characteristics and temperature of reservoirs, and is not necessarily related with gas sources. The Jialingjiang Formation in East Sichuan is buried deeply and its reservoir temperature has ever attained the condition of the TSR reaction. Due to poor reservoir potential, most of the gas pools do not have enough room for hydrocarbon reaction except for the Wolonghe gas pool, and thus natural gases with high H2S concentration are difficult to be generated abundantly. The south part of East Sichuan did not generate natural gases with high H2S concentration because the reservoir was buried relatively shallow, and did not suffer high temperature. Hence, while predicting the distribution of H2S, the characteristics and temperature of reservoirs are the necessary factors to be considerd besides the existence of anhydrite.
文摘Because of the difference ofoil and gas accumulation condition between the hanging wall and the footwall of a fault, there is a peculiar accumulation mechanism that oil and gas mainly exists in the hanging wall of the basement fault, but in the footwall of the shallow detachment fault in the Nanbaxian pool. The oil and gas of the Nanbaxian pool came from the mature Jurassic hydrocarbon source rock of the Yibei depression located at the south of the Nanbaxian pool. Firstly, the oil and gas accumulated in the traps of the hanging wall of the basement fault by way of the unconformity and the basement faults, and turned into some primary deep pools; and then, the shallow detachment fault that formed in the later tectonic movement broke into the deep primary pools, which caused the oil and gas migration upwards along the basement faults and the shallow detachment faults and the evolvement into some secondary oil and gas pools later. The history of the Nanbaxian oil and gas accumulation can be summarized successively as the syndepositional upheaval controlled by faults; single hydrocarbon source rock; unconformities and faults as migration channels; buoyancy, overpressure and tectonic stress as dynamic forces; multistage migration and accumulation of oil and gas; and finally an overlapped double-floor pattern of oil and gas accumulation. The most important explorative targets in the north of the Qaidam Basin are traps connected with the primary pools in the footwall by shallow detachment faults.
基金supported by the National Natural Science Foundation of China(Grant No.40102005 and No.49725205).
文摘Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates.
文摘Presents penetration control by weld pool resonance which occurs when the natural frequency of weld pool is equal to the frequency of sine wave current while the weld pool is excited into oscillation by superimposing sine wave current with definite frequency or regular frequency on DC current, and experiments carried out on detecting resonance signals during both stationary and travelling arc welding with variant frequency pulse current, and concludes with experimental results that penetration control can be realized by weld pool resonance when welding speed is lower than 80mm/min, and this control method is applicable to welding thin (0.5~3.0 mm) plates of carbon steel, low alloy steel, high strength steel and superhigh strength steel, and suitable for alternating polarity welding of stainless steel, titanium alloy steel and aluminum alloy.
文摘Hetianhe is a big carbonate gas field which isfound and demonstrated in the period of 'Chinese NationalNinth 5-Year Plan'. The proved reserve of Hetianhe gas fieldis over 600 ×10~8 m^3. Its main producing layers are Carbon-iferous bioclastic limestone and Ordovician carbonate com-posed of buried hill. The former is stratified gas pool withwater around its side, and the latter is massive gas pool withwater in its bottom. The gases in the gas pools belong to drygases with normal temperature and pressure systems. Basedon the correlation of gas and source rock, the gases aremainly generated from Cambrian source rocks. According tothe researches on source rock and structure evolution, andthe observations on the thin section to reservoir bitumen andthe studies on homogenization temperature of fluid inclu-sions, the gas pool has been identified and divided into threeformation periods. The first is Late Caledonian when the oilgenerated from the Cambrian source rocks and migratedalong faults, as a form of liquid facies into Ordovician carbonate res-ervoir and accumulated there. After that, the crustuplifted, the oil reservoir had been destroyed. The second isLate Hercynian when condensate gases generated from theCambrian source rocks and migrated into Ordovician res-ervoir, as a form of liquid facies. Since the fractures hadreached P strata, so the trap might have a real poor preser-vation condition, and the large-scale gas pool formation hadnot happened. The third gas reservoir formation period oc-curred in Himalaya. The fractures on both sides of Hetianhegas field developed violently under the forces of compression,and thus the present fault horst formed. The dry gases gen-erated from Cambrian source rocks and migrated upwardsas the form of gas facies into Ordovician and Carboniferousreservoirs, and the large gas pool as discovered at presentwas formed finally.
文摘The structural activities took place extensively in the Asia continent during the Cenozoic era owing to the strong continent-to-continent collision and continuous compression between the India Plate and the Eurasia Plate. Huang Jiqing called such structural activities Himalayan movement. China’s sedimentary basins developed and took shape mainly during the Himalayan movement period. It is also the main period for formation and development of the oil and gas reservoirs. Of 366 large and medium-sized oil and gas fields currently found in China, 212 reservoirs were formed in the Neo- gene-Quaternary period. The proportion is as high as 68.2%. The oil and gas migration and accumu- lation in the latest geological period, which were controlled by the times, properties, styles and strength of the Himalayan movement, took place mainly in eight regions, such as the low uplift area of Bohai Sea, the onshore faulted sag area of Bohai Bay, anticlinorium zone in Daqing, the foreland fold-and-thrust belt in West China, the tilted structural zone in West China, the cratonic palaeohigh in the Tarim Basin, the zone of fault and fold belt in the East Sichuan Basin, and the biological gas zone in the East Qaidam Basin. The oil and gas pool formations in those regions have their own charac- teristics. With the great potential and broad prospect, those regions are the main exploration areas in China in the future.
文摘By using the methods of hydrocarbon generation kinetics and carbon isotope kinetics, combined with geological background of natural gas pool formation, the generation and accumulation of natural gas from Yinan 2 gas pool was studied in Kuqa Depression of the Tarim Basin. Natural gas of Yinan 2 gas pool is mainly derived from Middle and Lower Jurassic coal-bearing source rocks, and generally belongs to long time-accumulated gas. It is suggested that Yinan 2 gas is chiefly accumulated in the last 5 Ma, its Ro ranges from 1.25% to 1.95%, and the loss rate of natural gas is about 25%-30%. This work not only complements and reduces the deficiency of formation model of natural gas pools which traditionally depends on the matching relationships between source rock, reservoir, cap rock, and trap, but also is a useful reference in the study of other gas pools.
基金supported by the National Basic Research Program of China (No. 2005CB422100)
文摘This article reports the main formation models and distribution of the oil and gas pools in Tarim basin, China, including (1) occurrence of the found oil and gas pools, (2) main formation models of oil and gas pools, and (3) distribution law of oil/gas pools. Petroleum is distributed widely in the strata of Tarim basin from the Sinian at the bottom to the Neogene at the top. However, the found oil and gas fields are mainly distributed in Shaya (沙雅) uplift, Tazhong (塔中) uplift, and Kuche (库车) depression. This article presents 4 main formation models, namely, early formation and long-term preservation, early formation and late reformation, middle-late multiphase-multisource formation, late single-stage formation. Tarim basin is very rich in petroleum resources. Long-term inherited intrabasinal paleohighs and slope zones are the most favorable areas for accumulation of hydrocarbons, but the types of oil and gas pools are different from area to area. The control of unconformities and faults on hydrocarbon accumulating is prominent in Tarim basin. Preservation conditions are of utmost importance. Formation of some oil and gas pools is the result of reforming and re-accumulating of early accumulated hydrocarbons.
文摘It is demonstrated by various geochemical indexes that the Zhengjia-Wangzhuang Oilfield with viscous crude oil in the Jiyang Depression has been sourced from the contribution of matured source rocks in the upper Es4. The principal cause leading to the densification of crude oils would be biodegradation, with the degradation level of crude oils being ranked as 2-8; vertically, the biodegradation level increases from the top to bottom of the oil column, with a distinctive biodegradation gradient occurring. Calculated parameters of sterane, terpane and methyl-phenanthrene have indicated that the source-rock’s maturity of crude oils and asphaltic sands ranges from 0.7 to 0.9, and based on the calculation of Easy Ro model, the temperature of hydrocarbon generation in the source rock would be within 120-140℃, which coincides with the measurements of reservoir inclusions. The measured homogenization temperature would represent the generation temperature of the source rock, and be fairly different from that
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.20076046 and 59836230).
文摘In this study, visualizations and experiments are carried out on the influence of static and rotating magnetic fields on the characteristics of HCFC-141b gas hydrate formation, such as crystallization form, formation temperature and induction time. It has been found that a proper rotating magnetic field can considerably improve the low-pressure gas hydrate formation process, especially in increasing the formation temperature and shortening the induction time. The mor- phology of the gas hydrate formation appears rather complex and compact. However, a proper static magnetic field can make the gas hydrate crystal more organized, which will be benefit to heat transfer.
文摘Direct cooling with inert,dielectric liquids may well become the technique of choice for the thermal manage- ment of future electronic systems.Due to the efficiency of phase-change processes and the simplicity of natural circulation,nucleate pool boiling is of great interest for this application.This paper examines the characteristics of vapor bubbles and nucleate pool boiling of the dielectric liquids.The results provide a theoretical foundation for understanding and interpreting the often complex empirical results reported in the literature.