By employing the improved moving least-square (IMLS) approximation, the improved element-free Galerkin (IEFG) method is presented for the unsteady Schrodinger equation. In the IEFG method, the two-dimensional (2D...By employing the improved moving least-square (IMLS) approximation, the improved element-free Galerkin (IEFG) method is presented for the unsteady Schrodinger equation. In the IEFG method, the two-dimensional (2D) trial function is approximated by the IMLS approximation, the variation method is used to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. Because the number of coefficients in the IMLS approximation is less than in the moving least-square (MLS) approximation, fewer nodes are needed in the entire domain when the IMLS approximation is used than when the MLS approximation is adopted. Then the IEFG method has high computational efficiency and accuracy. Several numerical examples are given to verify the accuracy and efficiency of the IEFG method in this paper.展开更多
We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue a...We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue and eigenfunction for such a system are given, they have the same forms as those for the usual harmonic oscillator with constant mass. The coherent state and its properties corresponding effective potentials for several mass functions, for the system with PDM are also discussed. We give the the systems with such potentials are isospectral to the usual harmonic oscillator.展开更多
The nonlinear Schr6dinger equation with Kerr law nonlinearity in the two-frequency interference is studied by the numerical method. Chaos occurs easily due to the absence of damping. This phenomenon will cause the dis...The nonlinear Schr6dinger equation with Kerr law nonlinearity in the two-frequency interference is studied by the numerical method. Chaos occurs easily due to the absence of damping. This phenomenon will cause the distortion in the process of information transmission. We find that fiber-optic transmit signals still present chaotic phenomena if the control intensity is smaller. With the increase of intensity, the fiber-optic signal can stay in a stable state in some regions. When the strength is suppressed to a certain value, an unstable phenomenon of the fiber-optic signal occurs. Moreover we discuss the sensitivities of the parameters to be controlled. The results show that the linear term coefficient and the environment of two quite different frequences have less effects on the fiber-optic transmission. Meanwhile the phenomena of vibration, attenuation and escape occur in some regions.展开更多
By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soli...By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soliton solution, bright and dark soliton solution, alternating phase bright soliton solution, alternating phase dark soliton solution, and alternating phase bright and dark soliton solution, if a special relation is bound on the coefficients of the equation.展开更多
In this work, we present the direct discontinuous Galerkin (DDG) method for the one-dimensional coupled nonlinear Schr5dinger (CNLS) equation. We prove that the new discontinuous Galerkin method preserves the disc...In this work, we present the direct discontinuous Galerkin (DDG) method for the one-dimensional coupled nonlinear Schr5dinger (CNLS) equation. We prove that the new discontinuous Galerkin method preserves the discrete mass conservations corresponding to the properties of the CNLS system. The ordinary differential equations obtained by the DDG space discretization is solved via a third-order stabilized Runge Kutta method. Numerical experiments show that the new DDG scheme gives stable and less diffusive results and has excellent long-time numerical behaviors for the CNLS equations.展开更多
In this paper, some two-grid finite element schemes are constructed for solving the nonlinear SchrSdinger equation. With these schemes, the solution of the original problem is reduced to the solution of the same probl...In this paper, some two-grid finite element schemes are constructed for solving the nonlinear SchrSdinger equation. With these schemes, the solution of the original problem is reduced to the solution of the same problem on a much coarser grid together with the solutions of two linear problems on a fine grid. We have shown, both theoretically and numerically, that our schemes are efficient and achieve asymptotically optimal accuracy.展开更多
We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negat...We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negative in some domain. Moreover, the potential behaves like potential well when the parameter A is large. Using variational methods combining Nehari methods, we prove that the equation has a least energy solution which, as the parameter A becomes large, localized near the bottom of the potential well. Our result is an extension of the corresponding result for the SchrSdinger equation which involves critical growth but does not involve electromagnetic fields.展开更多
In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule o...In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters a and ;3 which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms.展开更多
Consider the following system of double coupled Schrodinger equations arising from Bose-Einstein condensates etc., where μ1, μ2 are positive and fixed; κ and β are linear and nonlinear coupling parameters respect...Consider the following system of double coupled Schrodinger equations arising from Bose-Einstein condensates etc., where μ1, μ2 are positive and fixed; κ and β are linear and nonlinear coupling parameters respectively. We first use critical point theory and Liouville type theorem to prove some existence and nonexistence results on the positive solutions of this system. Then using the positive and non-degenerate solution to the scalar equation -△ω + ω = ω3, ω ∈ Hr1(RN), we construct a synchronized solution branch to prove that for/3 in certain range and fixed, there exist a series of bifurcations in product space R×Hr1(RN)×Hr1(RN) with parameter κ,展开更多
This paper considers the existence of global smooth solutions of semilinear schrSdinger equation with a boundary feedback on 2-dimensional Riemannian manifolds when initial data are small. The authors show that the ex...This paper considers the existence of global smooth solutions of semilinear schrSdinger equation with a boundary feedback on 2-dimensional Riemannian manifolds when initial data are small. The authors show that the existence of global solutions depends not only on the boundary feedback, but also on a Riemannian metric, given by the coefficient of the principle part and the original metric of the manifold. In particular, the authers prove that the energy of the system decays exponentially.展开更多
We consider the quasilinear Schrdinger equations of the form-ε~2?u + V(x)u- ε~2?(u2)u = g(u), x ∈ R^N,where ε 〉 0 is a small parameter, the nonlinearity g(u) ∈ C^1(R) is an odd function with subcrit...We consider the quasilinear Schrdinger equations of the form-ε~2?u + V(x)u- ε~2?(u2)u = g(u), x ∈ R^N,where ε 〉 0 is a small parameter, the nonlinearity g(u) ∈ C^1(R) is an odd function with subcritical growth and V(x) is a positive Hlder continuous function which is bounded from below, away from zero, and infΛV(x) 0 such that for all ε∈(0, ε0],the above mentioned problem possesses a sign-changing solution uε which exhibits concentration profile around the local minimum point of V(x) as ε→ 0~+.展开更多
The Cauchy problem for a linear 2mth-order Schrōdinger equation ut=-i(-△)^mu, in R^N×R+,u|t=0=u0;m≥1 is an integer,is studied, for initial data uo in the weighted space L^2ρ(R^N),withρ^*(x)=e|x|^a...The Cauchy problem for a linear 2mth-order Schrōdinger equation ut=-i(-△)^mu, in R^N×R+,u|t=0=u0;m≥1 is an integer,is studied, for initial data uo in the weighted space L^2ρ(R^N),withρ^*(x)=e|x|^a and a=2m/2m-1∈(1,2].The following five problems are studied: (I) A sharp asymptotic behaviour of solutions as t → +∞ is governed by a discrete spectrum and a countable set Ф of the eigenfunctions of the linear rescaled operator B=-i(-△)^m+1/2my·↓△+N/2mI,with the spectrum σ(B)={λβ=-|β|≥0}. (Ⅱ) Finite-time blow-up local structures of nodal sets of solutions as t → 0^- and a formation of "multiple zeros" are described by the eigenfunctions, being generalized Hermite polynomials, of the "adjoint" operator B=-i(-△)^m-1/2my·↓△,with the same spectrum σ(B^*)=σ(B).Applications of these spectral results also include: (Ⅲ) a unique continuation theorem, and (IV) boundary characteristic point regularity issues. Some applications are discussed for more general linear PDEs and for the nonlinear Schr6dinger equations in the focusing ("+") and defocusing ("-") cases ut=-(-△)^mu±i|u|^p-1u,in R^N×R+,where P〉1,as well as for: (V) the quasilinear Schr6dinger equation of a "porous medium type" ut=-(-△)^m(|u|^nu),in R^N×R+,where n〉0.For the latter one, the main idea towards countable families of nonlinear eigenfunctions is to perform a homotopic path n → 0^+ and to use spectral theory of the pair {B,B^*}.展开更多
Based on a newly revised inverse scattering transform for the derivative nonlinear SchrSdinger (DNLS+) equation with nonvanishing boundary condition (NVBC), the explicit breather- type and pure N-soliton solution...Based on a newly revised inverse scattering transform for the derivative nonlinear SchrSdinger (DNLS+) equation with nonvanishing boundary condition (NVBC), the explicit breather- type and pure N-soliton solution has been derived by some algebra techniques. The two-breather solution and the pure double-soliton solution have been given as two typical examples in illustration of the general formula of the multi-soliton solution. The asymptotic behaviors of the N-soliton solution are discussed in detail.展开更多
The South China Sea (SCS) is a hot spot for oceanic internal solitary waves due to many factors, such as the complexity of the terrain environment. The internal solitary waves in the northern SCS mainly originate in...The South China Sea (SCS) is a hot spot for oceanic internal solitary waves due to many factors, such as the complexity of the terrain environment. The internal solitary waves in the northern SCS mainly originate in the Luzon Strait. The generation mechanism of the internal solitary waves in the Luzon Strait is discussed using a modulation instability. The energy gain of the modulation instability is derived based on the fully nonlinear Schr6dinger equation. The peak value of the gain is calculated under different conditions of stratification, wavelength and the initial amplitude of an internal tidal wave. The characteristics of the modulation instability in the Luzon Strait are investigated. The conditions that make the internal tidal wave evolve into an internal solitary wave in the Luzon strait are also obtained. The results show that the internal tide waves can generate the modulation instability in the Luzon Strait and that the maximum gain occur at the eastern sill of the Luzon Strait, where the internal tide waves start to break up into internal solitary trains. The magnitude and the scope of the peak gain are relevant to the stratification and the initial conditions of the internal tide waves. The numerical simulation results are consistent with the in-situ data.展开更多
Nonlinear mechanics for a super-thin elastic rod with the biological background of DNA super-coiling macromolecules is an interdisciplinary research area of classical mechanics and molecular biology. It is also a subj...Nonlinear mechanics for a super-thin elastic rod with the biological background of DNA super-coiling macromolecules is an interdisciplinary research area of classical mechanics and molecular biology. It is also a subject of dynamics and elasticity because elastic bodies are analyzed via the theory of dynamics. It is in frontiers of general mechanics (dynamics and control). This dissertation is devoted to model a constrained super-thin elastic rod and analyze its stability in equilibrium. The existing research results are summarized. Analytical mechanics is systematically applied to model the elastic rod. The Schroedinger equation for complex curvatures or complex bending moments is, respectively, extended from the case of circular crosssections to that of non-circular ones. The equilibrium of a rod constrained on a surface is investigated.展开更多
We study the spherical quantum pseudodots in the Schr6dinger equation by using the pseudo-harmonic plus harmonic oscillator potentials considering the effect of the external electric and magnetic fields. The finite en...We study the spherical quantum pseudodots in the Schr6dinger equation by using the pseudo-harmonic plus harmonic oscillator potentials considering the effect of the external electric and magnetic fields. The finite energy levels and the wave functions are calculated. Furthermore, the behavior of the essential thermodynamic quantities such as, the free energy, the mean energy, the entropy, the specific heat, the magnetization, the magnetic susceptibility, and the persistent currents are also studied by using the characteristic function. Our analytical results are found to be in good agreement with the other works. The numerical results on the energy levels as well as the thermodynamic quantities have also been given.展开更多
We investigate the Schr6dinger equation for a particle with a nonuniform solitonic mass density. First, we discuss in extent the (nontrivial) position-dependent mass V(x) = 0 case whose solutions are hypergeometri...We investigate the Schr6dinger equation for a particle with a nonuniform solitonic mass density. First, we discuss in extent the (nontrivial) position-dependent mass V(x) = 0 case whose solutions are hypergeometric functions in tanh2 x. Then, we consider an external hyperbolic-tangent potential. We show that the effective quantum mechanical problem is given by a Heun class equation and find analytically an eigenbasis for the space of solutions. We also compute the eigenstat, es for a potential of the form V (x) = Vo sinh2 z.展开更多
We need to solve a suitable exponential form of the position-dependent mass (PDM) Schr6dinger equation with a charged particle placed in the Hulthen plus Coulomb-like potential field and under the actions of the ext...We need to solve a suitable exponential form of the position-dependent mass (PDM) Schr6dinger equation with a charged particle placed in the Hulthen plus Coulomb-like potential field and under the actions of the external magnetic and Aharonov-Bohm (AB) flux fields. The bound state energies and their corresponding wave functions are calculated for the spatially-dependent mass distribution function of interest in physics. A few plots of some numerical results with respect to the energy are shown.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11171208)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY15A020007)+1 种基金the Natural Science Foundation of Ningbo City(Grant No.2014A610028)the K.C.Wong Magna Fund in Ningbo University,China
文摘By employing the improved moving least-square (IMLS) approximation, the improved element-free Galerkin (IEFG) method is presented for the unsteady Schrodinger equation. In the IEFG method, the two-dimensional (2D) trial function is approximated by the IMLS approximation, the variation method is used to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. Because the number of coefficients in the IMLS approximation is less than in the moving least-square (MLS) approximation, fewer nodes are needed in the entire domain when the IMLS approximation is used than when the MLS approximation is adopted. Then the IEFG method has high computational efficiency and accuracy. Several numerical examples are given to verify the accuracy and efficiency of the IEFG method in this paper.
基金supported by the National Natural Science Foundation of China under Grant Nos.10125521 and 60371013the 973 National Basic Pesearch and Development Program of China under Contract No.G2000077400
文摘We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue and eigenfunction for such a system are given, they have the same forms as those for the usual harmonic oscillator with constant mass. The coherent state and its properties corresponding effective potentials for several mass functions, for the system with PDM are also discussed. We give the the systems with such potentials are isospectral to the usual harmonic oscillator.
基金Project supported by the National Natural Science Foundation of China (Grant No.11101191)
文摘The nonlinear Schr6dinger equation with Kerr law nonlinearity in the two-frequency interference is studied by the numerical method. Chaos occurs easily due to the absence of damping. This phenomenon will cause the distortion in the process of information transmission. We find that fiber-optic transmit signals still present chaotic phenomena if the control intensity is smaller. With the increase of intensity, the fiber-optic signal can stay in a stable state in some regions. When the strength is suppressed to a certain value, an unstable phenomenon of the fiber-optic signal occurs. Moreover we discuss the sensitivities of the parameters to be controlled. The results show that the linear term coefficient and the environment of two quite different frequences have less effects on the fiber-optic transmission. Meanwhile the phenomena of vibration, attenuation and escape occur in some regions.
基金The project supported by National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province of China, and the Natural Scienoe Foundation of Liaocheng University
文摘By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soliton solution, bright and dark soliton solution, alternating phase bright soliton solution, alternating phase dark soliton solution, and alternating phase bright and dark soliton solution, if a special relation is bound on the coefficients of the equation.
基金Project supported by the National Natural Science Foundation of China (Grant No 11171038).
文摘In this work, we present the direct discontinuous Galerkin (DDG) method for the one-dimensional coupled nonlinear Schr5dinger (CNLS) equation. We prove that the new discontinuous Galerkin method preserves the discrete mass conservations corresponding to the properties of the CNLS system. The ordinary differential equations obtained by the DDG space discretization is solved via a third-order stabilized Runge Kutta method. Numerical experiments show that the new DDG scheme gives stable and less diffusive results and has excellent long-time numerical behaviors for the CNLS equations.
基金Acknowledgments. This work is partially supported by National Science Foundation of China (10971059), Young Scientists Foundation of the National Science Foundation of China (11101136), Hunan Provincial Natural Science Foundation of China (14JJ2114), Science and Technology Foundation of Hunan Province (2013FJ4229).
文摘In this paper, some two-grid finite element schemes are constructed for solving the nonlinear SchrSdinger equation. With these schemes, the solution of the original problem is reduced to the solution of the same problem on a much coarser grid together with the solutions of two linear problems on a fine grid. We have shown, both theoretically and numerically, that our schemes are efficient and achieve asymptotically optimal accuracy.
基金supported by Fundamental Research Funds for the Central Universities and National Natural Science Foundation of China(Grant No.11171028)
文摘We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negative in some domain. Moreover, the potential behaves like potential well when the parameter A is large. Using variational methods combining Nehari methods, we prove that the equation has a least energy solution which, as the parameter A becomes large, localized near the bottom of the potential well. Our result is an extension of the corresponding result for the SchrSdinger equation which involves critical growth but does not involve electromagnetic fields.
基金Supported by the National Natural Science Foundation of China under Grant No.11271210the K.C.Wong Magna Fund in Ningbo University
文摘In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters a and ;3 which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms.
基金supported by National Natural Science Foundation of China(Grant Nos.11325107,11271353 and 11331010)the China Postdoctoral Science Foundation
文摘Consider the following system of double coupled Schrodinger equations arising from Bose-Einstein condensates etc., where μ1, μ2 are positive and fixed; κ and β are linear and nonlinear coupling parameters respectively. We first use critical point theory and Liouville type theorem to prove some existence and nonexistence results on the positive solutions of this system. Then using the positive and non-degenerate solution to the scalar equation -△ω + ω = ω3, ω ∈ Hr1(RN), we construct a synchronized solution branch to prove that for/3 in certain range and fixed, there exist a series of bifurcations in product space R×Hr1(RN)×Hr1(RN) with parameter κ,
基金supported by the National Science Foundation of China under Grants Nos. 60225003, 60334040, 60221301, 60774025, and 10831007Chinese Academy of Sciences under Grant No KJCX3-SYW-S01
文摘This paper considers the existence of global smooth solutions of semilinear schrSdinger equation with a boundary feedback on 2-dimensional Riemannian manifolds when initial data are small. The authors show that the existence of global solutions depends not only on the boundary feedback, but also on a Riemannian metric, given by the coefficient of the principle part and the original metric of the manifold. In particular, the authers prove that the energy of the system decays exponentially.
基金supported by National Natural Science Foundation of China(Grant Nos.11371160 and 11328101)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.#IRT13066)
文摘We consider the quasilinear Schrdinger equations of the form-ε~2?u + V(x)u- ε~2?(u2)u = g(u), x ∈ R^N,where ε 〉 0 is a small parameter, the nonlinearity g(u) ∈ C^1(R) is an odd function with subcritical growth and V(x) is a positive Hlder continuous function which is bounded from below, away from zero, and infΛV(x) 0 such that for all ε∈(0, ε0],the above mentioned problem possesses a sign-changing solution uε which exhibits concentration profile around the local minimum point of V(x) as ε→ 0~+.
文摘The Cauchy problem for a linear 2mth-order Schrōdinger equation ut=-i(-△)^mu, in R^N×R+,u|t=0=u0;m≥1 is an integer,is studied, for initial data uo in the weighted space L^2ρ(R^N),withρ^*(x)=e|x|^a and a=2m/2m-1∈(1,2].The following five problems are studied: (I) A sharp asymptotic behaviour of solutions as t → +∞ is governed by a discrete spectrum and a countable set Ф of the eigenfunctions of the linear rescaled operator B=-i(-△)^m+1/2my·↓△+N/2mI,with the spectrum σ(B)={λβ=-|β|≥0}. (Ⅱ) Finite-time blow-up local structures of nodal sets of solutions as t → 0^- and a formation of "multiple zeros" are described by the eigenfunctions, being generalized Hermite polynomials, of the "adjoint" operator B=-i(-△)^m-1/2my·↓△,with the same spectrum σ(B^*)=σ(B).Applications of these spectral results also include: (Ⅲ) a unique continuation theorem, and (IV) boundary characteristic point regularity issues. Some applications are discussed for more general linear PDEs and for the nonlinear Schr6dinger equations in the focusing ("+") and defocusing ("-") cases ut=-(-△)^mu±i|u|^p-1u,in R^N×R+,where P〉1,as well as for: (V) the quasilinear Schr6dinger equation of a "porous medium type" ut=-(-△)^m(|u|^nu),in R^N×R+,where n〉0.For the latter one, the main idea towards countable families of nonlinear eigenfunctions is to perform a homotopic path n → 0^+ and to use spectral theory of the pair {B,B^*}.
基金Supported by the National Natural Science Foundation of China(10775105)
文摘Based on a newly revised inverse scattering transform for the derivative nonlinear SchrSdinger (DNLS+) equation with nonvanishing boundary condition (NVBC), the explicit breather- type and pure N-soliton solution has been derived by some algebra techniques. The two-breather solution and the pure double-soliton solution have been given as two typical examples in illustration of the general formula of the multi-soliton solution. The asymptotic behaviors of the N-soliton solution are discussed in detail.
基金The National Natural Science Foundation of China under contract No.61171161
文摘The South China Sea (SCS) is a hot spot for oceanic internal solitary waves due to many factors, such as the complexity of the terrain environment. The internal solitary waves in the northern SCS mainly originate in the Luzon Strait. The generation mechanism of the internal solitary waves in the Luzon Strait is discussed using a modulation instability. The energy gain of the modulation instability is derived based on the fully nonlinear Schr6dinger equation. The peak value of the gain is calculated under different conditions of stratification, wavelength and the initial amplitude of an internal tidal wave. The characteristics of the modulation instability in the Luzon Strait are investigated. The conditions that make the internal tidal wave evolve into an internal solitary wave in the Luzon strait are also obtained. The results show that the internal tide waves can generate the modulation instability in the Luzon Strait and that the maximum gain occur at the eastern sill of the Luzon Strait, where the internal tide waves start to break up into internal solitary trains. The magnitude and the scope of the peak gain are relevant to the stratification and the initial conditions of the internal tide waves. The numerical simulation results are consistent with the in-situ data.
文摘Nonlinear mechanics for a super-thin elastic rod with the biological background of DNA super-coiling macromolecules is an interdisciplinary research area of classical mechanics and molecular biology. It is also a subject of dynamics and elasticity because elastic bodies are analyzed via the theory of dynamics. It is in frontiers of general mechanics (dynamics and control). This dissertation is devoted to model a constrained super-thin elastic rod and analyze its stability in equilibrium. The existing research results are summarized. Analytical mechanics is systematically applied to model the elastic rod. The Schroedinger equation for complex curvatures or complex bending moments is, respectively, extended from the case of circular crosssections to that of non-circular ones. The equilibrium of a rod constrained on a surface is investigated.
文摘We study the spherical quantum pseudodots in the Schr6dinger equation by using the pseudo-harmonic plus harmonic oscillator potentials considering the effect of the external electric and magnetic fields. The finite energy levels and the wave functions are calculated. Furthermore, the behavior of the essential thermodynamic quantities such as, the free energy, the mean energy, the entropy, the specific heat, the magnetization, the magnetic susceptibility, and the persistent currents are also studied by using the characteristic function. Our analytical results are found to be in good agreement with the other works. The numerical results on the energy levels as well as the thermodynamic quantities have also been given.
文摘We investigate the Schr6dinger equation for a particle with a nonuniform solitonic mass density. First, we discuss in extent the (nontrivial) position-dependent mass V(x) = 0 case whose solutions are hypergeometric functions in tanh2 x. Then, we consider an external hyperbolic-tangent potential. We show that the effective quantum mechanical problem is given by a Heun class equation and find analytically an eigenbasis for the space of solutions. We also compute the eigenstat, es for a potential of the form V (x) = Vo sinh2 z.
文摘We need to solve a suitable exponential form of the position-dependent mass (PDM) Schr6dinger equation with a charged particle placed in the Hulthen plus Coulomb-like potential field and under the actions of the external magnetic and Aharonov-Bohm (AB) flux fields. The bound state energies and their corresponding wave functions are calculated for the spatially-dependent mass distribution function of interest in physics. A few plots of some numerical results with respect to the energy are shown.