It is well known that thermodynamics raises conceptual difficulties. Far to be limited to students having to learn the subject, this impression is sometimes mentioned by specialists themselves who confess not being to...It is well known that thermodynamics raises conceptual difficulties. Far to be limited to students having to learn the subject, this impression is sometimes mentioned by specialists themselves who confess not being totally sure of the consistency of the thermodynamic theory, despite the fact that its practical usefulness is indisputable. The present paper deals with this interesting question and leads to the idea that there is an imperfect convergence between the way of using the thermodynamic tool and the way of understanding its significance. Illustrated by a very simple example, the discussion can be followed by every scientist having the fundamental basis in thermodynamics. The suggested hypothesis is that the Einstein mass-energy relation is closely associated to the concept of entropy, opening a link between thermodynamics and relativity.展开更多
Thermodynamics being among the most synthetic theories of physics and the mass-energy relation E = mc2 among the most general equations of science, it is somewhat surprising that this latter is not explicitly present ...Thermodynamics being among the most synthetic theories of physics and the mass-energy relation E = mc2 among the most general equations of science, it is somewhat surprising that this latter is not explicitly present in the laws of thermodynamics. Coupling this observation with the conceptual difficulties often felt in learning thermodynamics leads to the idea that both situations may have the same cause. On the basis of these clues, this paper is intended to provide complementary arguments to a hypothesis already presented. It consists of showing the existence of an imperfect compatibility between the conventional formulations of the first and second laws of thermodynamics and suggesting the need of the mass-energy relation to solving the problem.展开更多
Since the advent of relativity, it is widely accepted that the law of conservation of energy must include the energy created by disintegration of matter, or converted into matter. The aim of the present paper deals wi...Since the advent of relativity, it is widely accepted that the law of conservation of energy must include the energy created by disintegration of matter, or converted into matter. The aim of the present paper deals with the insertion of this concept into the basic equations of thermodynamics.展开更多
The first part of this paper is a condensed synthesis of the matter presented in several previous ones. It begins with an argumentation showing that the first and second laws of thermodynamics are incompatible with on...The first part of this paper is a condensed synthesis of the matter presented in several previous ones. It begins with an argumentation showing that the first and second laws of thermodynamics are incompatible with one another if they are not connected to relativity. The solution proposed consists of inserting the Einstein mass-energy relation into a general equation that associates both laws. The second part deals with some consequences of this new insight and its possible link with gravitation. Despite a slight modification of the usual reasoning, the suggested hypothesis leads to a simplification and extension of the thermodynamic theory and to the idea that relativity is omnipresent around us.展开更多
The conceptual difficulties encountered in thermodynamics are well known and are certainly the reasons that have led the great physicist Arnold Sommerfeld, a long time ago, to say that understanding thermodynamics is ...The conceptual difficulties encountered in thermodynamics are well known and are certainly the reasons that have led the great physicist Arnold Sommerfeld, a long time ago, to say that understanding thermodynamics is not easy. The situation remains nearly the same today and is due to the fact that the tools used in thermodynamics, <em>i</em>.<em>e</em>. the equations, are not in good accordance with the laws of thermodynamics. Since the efficiency of the tools cannot be contested, it is probably the formulation of the laws that needs to be revised. On the basis of arguments already evoked in previous papers, the suggestion presented below is a contribution going in this sense and inserting the Einstein’s relation <em>E</em> = <em>mc</em><sup>2</sup> in the thermodynamic reasoning.展开更多
We address the case in which querying the oracle in Grover's algorithm is exposed to noise including phase distortions. The oracle-box wires can be altered by an opposing party that tries to prevent reception of corr...We address the case in which querying the oracle in Grover's algorithm is exposed to noise including phase distortions. The oracle-box wires can be altered by an opposing party that tries to prevent reception of correct data from the oracle. This situation reflects an experienced truth that any access to prophetic knowledge cannot be common and direct. To study this problem, we introduce a simple model of collective phase distortions on the basis of a phase-damping channel. In the model, the probability of success is not altered via the oracle-box wires per se. Phase distortions of the considered type can hardly be detected via any one-time query to the oracle. However, the probability of success is significantly changed when such errors are introduced as an intermediate step in the Grover iteration. We investigate the probability of success with respect to variations of the parameter that characterizes the amount of phase errors. It turns out that the probability of success decreases significantly even if the error is not very high. Moreover, this probability quickly reduces to the value of one half, which corresponds to the completely mixed state. We also study trade-off relations between quantum coherence and the probability of success in the presence of noise of the considered type.展开更多
文摘It is well known that thermodynamics raises conceptual difficulties. Far to be limited to students having to learn the subject, this impression is sometimes mentioned by specialists themselves who confess not being totally sure of the consistency of the thermodynamic theory, despite the fact that its practical usefulness is indisputable. The present paper deals with this interesting question and leads to the idea that there is an imperfect convergence between the way of using the thermodynamic tool and the way of understanding its significance. Illustrated by a very simple example, the discussion can be followed by every scientist having the fundamental basis in thermodynamics. The suggested hypothesis is that the Einstein mass-energy relation is closely associated to the concept of entropy, opening a link between thermodynamics and relativity.
文摘Thermodynamics being among the most synthetic theories of physics and the mass-energy relation E = mc2 among the most general equations of science, it is somewhat surprising that this latter is not explicitly present in the laws of thermodynamics. Coupling this observation with the conceptual difficulties often felt in learning thermodynamics leads to the idea that both situations may have the same cause. On the basis of these clues, this paper is intended to provide complementary arguments to a hypothesis already presented. It consists of showing the existence of an imperfect compatibility between the conventional formulations of the first and second laws of thermodynamics and suggesting the need of the mass-energy relation to solving the problem.
文摘Since the advent of relativity, it is widely accepted that the law of conservation of energy must include the energy created by disintegration of matter, or converted into matter. The aim of the present paper deals with the insertion of this concept into the basic equations of thermodynamics.
文摘The first part of this paper is a condensed synthesis of the matter presented in several previous ones. It begins with an argumentation showing that the first and second laws of thermodynamics are incompatible with one another if they are not connected to relativity. The solution proposed consists of inserting the Einstein mass-energy relation into a general equation that associates both laws. The second part deals with some consequences of this new insight and its possible link with gravitation. Despite a slight modification of the usual reasoning, the suggested hypothesis leads to a simplification and extension of the thermodynamic theory and to the idea that relativity is omnipresent around us.
文摘The conceptual difficulties encountered in thermodynamics are well known and are certainly the reasons that have led the great physicist Arnold Sommerfeld, a long time ago, to say that understanding thermodynamics is not easy. The situation remains nearly the same today and is due to the fact that the tools used in thermodynamics, <em>i</em>.<em>e</em>. the equations, are not in good accordance with the laws of thermodynamics. Since the efficiency of the tools cannot be contested, it is probably the formulation of the laws that needs to be revised. On the basis of arguments already evoked in previous papers, the suggestion presented below is a contribution going in this sense and inserting the Einstein’s relation <em>E</em> = <em>mc</em><sup>2</sup> in the thermodynamic reasoning.
文摘We address the case in which querying the oracle in Grover's algorithm is exposed to noise including phase distortions. The oracle-box wires can be altered by an opposing party that tries to prevent reception of correct data from the oracle. This situation reflects an experienced truth that any access to prophetic knowledge cannot be common and direct. To study this problem, we introduce a simple model of collective phase distortions on the basis of a phase-damping channel. In the model, the probability of success is not altered via the oracle-box wires per se. Phase distortions of the considered type can hardly be detected via any one-time query to the oracle. However, the probability of success is significantly changed when such errors are introduced as an intermediate step in the Grover iteration. We investigate the probability of success with respect to variations of the parameter that characterizes the amount of phase errors. It turns out that the probability of success decreases significantly even if the error is not very high. Moreover, this probability quickly reduces to the value of one half, which corresponds to the completely mixed state. We also study trade-off relations between quantum coherence and the probability of success in the presence of noise of the considered type.