With the rapid development of higher education in China,colleges and universities are facing new challenges and impacts in talent training.Probability Theory and Mathematical Statistics is one of the important courses...With the rapid development of higher education in China,colleges and universities are facing new challenges and impacts in talent training.Probability Theory and Mathematical Statistics is one of the important courses in higher education for science and engineering majors and economics and management majors.Its critical role in cultivating students’thinking skills and improving their problem-solving skills is self-evident.Course ideological and political education construction is an important link in college talent training work.Combining ideological and political education with course teaching can help students establish correct value concepts and play a certain role in improving their comprehensive ability and quality.At present,the construction of ideological and political education in the Probability Theory and Mathematical Statistics course still faces some problems,mainly manifested in the lack of attention paid by teachers to course ideological and political education,insufficient exploitation of ideological and political elements,and the simplification of ideological and political education implementation methods.In order to comprehensively deepen the construction of course ideological and political education in line with the actual needs of Probability Theory and Mathematical Statistics course teaching,we should strengthen the construction of teacher teams,improve teachers’ability to carry out course ideological and political education,integrate educational resources,develop educational resources for ideological and political education,and innovate teaching methods to improve the overall effect of ideological and political education integration.展开更多
With the illustration of a specific problem, this paper demonstrates that using Monte Carlo Simulation technology will improve intuitive effect of teaching Probability and Mathematical Statistics course, and save inst...With the illustration of a specific problem, this paper demonstrates that using Monte Carlo Simulation technology will improve intuitive effect of teaching Probability and Mathematical Statistics course, and save instructors' effort as well.And it is estimated that Monte Carlo Simulation technology will be one of the major teaching methods for Probability and Mathematical Statistics course in the future.展开更多
In this paper, we conduct research on the applications of advanced mathematics on the mathematical modeling and the inner connections with linear algebra and the probability statistics. Aiming at model in mathematical...In this paper, we conduct research on the applications of advanced mathematics on the mathematical modeling and the inner connections with linear algebra and the probability statistics. Aiming at model in mathematical modeling and solving and model of evaluation and promotion of the two links, put forward the "bystander" and "the authorities" this two characters, and points out that excellent mathematical modeling participants should have "from a bystander to the authorities" and "from the authorities to return to bystanders" two-way role transformation ability. Great situation in mathematics teaching, by means of the mathematical modeling formed in the development of the teachers, as well as the teaching thought, teaching experience and achievements, the onward march of mathematical experiment should be faster than mathematical modeling. Our research provides the new paradigm for the math development which will be meaningful.展开更多
This is a brief review of alternative methods of problem-solving in geoscience with emphasis on the role of mathematical geology. It is desirable to maintain a clear-cut distinction between reliable facts which can be...This is a brief review of alternative methods of problem-solving in geoscience with emphasis on the role of mathematical geology. It is desirable to maintain a clear-cut distinction between reliable facts which can be stored in data banks and concepts that can be incorporated in the specifications of statistical models designed for specific purposes. If possible, subjective probabilities should be incorporated in hypotheses that are to be tested by statistical inference.展开更多
On the basis of the entropy of incomplete statistics (IS) and the joint probability factorization condition, two controversial problems existing in IS are investigated: one is what expression of the internal energy...On the basis of the entropy of incomplete statistics (IS) and the joint probability factorization condition, two controversial problems existing in IS are investigated: one is what expression of the internal energy is reasonable for a composite system and the other is whether the traditional zeroth law of thermodynamics is suitable for IS. Some new equivalent expressions of the internal energy of a composite system are derived through accurate mathematical calculation. Moreover, a self-consistent calculation is used to expound that the zeroth law of thermodynamics is also suitable for IS, but it cannot be proven theoretically. Finally, it is pointed out that the generalized zeroth law of thermodynamics for incomplete nonextensive statistics is unnecessary and the nonextensive assumptions for the composite internal energy will lead to mathematical contradiction.展开更多
In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped i...In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped in detail. It is styled here as Monty Hall 1.0. The proposed analysis was then generalized to related cases involving any number of doors (d), cars (c), and opened doors (o) (Monty Hall 2.0) and 1 specific case involving more than 1 picked door (p) (Monty Hall 3.0). In cognitive terms, this analysis was interpreted in function of the presumed digital nature of rational thought and language. In the present paper, Monty Hall 1.0 and 2.0 are briefly reviewed (§§2-3). Additional generalizations of the problem are then presented in §§4-7. They concern expansions of the problem to the following items: (1) to any number of picked doors, with p denoting the number of doors initially picked and q the number of doors picked when switching doors after doors have been opened to reveal goats (Monty Hall 3.0;see §4);(3) to the precise conditions under which one’s chances increase or decrease in instances of Monty Hall 3.0 (Monty Hall 3.2;see §6);and (4) to any number of switches of doors (s) (Monty Hall 4.0;see §7). The afore-mentioned article in APM, Vol. 1, No. 4 may serve as a useful introduction to the analysis of the higher variations of the Monty Hall problem offered in the present article. The body of the article is by Leo Depuydt. An appendix by Richard D. Gill (see §8) provides additional context by building a bridge to modern probability theory in its conventional notation and by pointing to the benefits of certain interesting and relevant tools of computation now available on the Internet. The cognitive component of the earlier investigation is extended in §9 by reflections on the foundations of mathematics. It will be proposed, in the footsteps of George Boole, that the phenomenon of mathematics needs to be defined in empirical terms as something that happens to the brain or something that the brain does. It is generally assumed that mathematics is a property of nature or reality or whatever one may call it. There is not the slightest intention in this paper to falsify this assumption because it cannot be falsified, just as it cannot be empirically or positively proven. But there is no way that this assumption can be a factual observation. It can be no more than an altogether reasonable, yet fully secondary, inference derived mainly from the fact that mathematics appears to work, even if some may deem the fact of this match to constitute proof. On the deepest empirical level, mathematics can only be directly observed and therefore directly analyzed as an activity of the brain. The study of mathematics therefore becomes an essential part of the study of cognition and human intelligence. The reflections on mathematics as a phenomenon offered in the present article will serve as a prelude to planned articles on how to redefine the foundations of probability as one type of mathematics in cognitive fashion and on how exactly Boole’s theory of probability subsumes, supersedes, and completes classical probability theory. §§2-7 combined, on the one hand, and §9, on the other hand, are both self-sufficient units and can be read independently from one another. The ultimate design of the larger project of which this paper is part remains the increase of digitalization of the analysis of rational thought and language, that is, of (rational, not emotional) human intelligence. To reach out to other disciplines, an effort is made to describe the mathematics more explicitly than is usual.展开更多
The Monty Hall problem has received its fair share of attention in mathematics. Recently, an entire monograph has been devoted to its history. There has been a multiplicity of approaches to the problem. These approach...The Monty Hall problem has received its fair share of attention in mathematics. Recently, an entire monograph has been devoted to its history. There has been a multiplicity of approaches to the problem. These approaches are not necessarily mutually exclusive. The design of the present paper is to add one more approach by analyzing the mathematical structure of the Monty Hall problem in digital terms. The structure of the problem is described as much as possible in the tradition and the spirit—and as much as possible by means of the algebraic conventions—of George Boole’s Investigation of the Laws of Thought (1854), the Magna Charta of the digital age, and of John Venn’s Symbolic Logic (second edition, 1894), which is squarely based on Boole’s Investigation and elucidates it in many ways. The focus is not only on the digital-mathematical structure itself but also on its relation to the presumed digital nature of cognition as expressed in rational thought and language. The digital approach is outlined in part 1. In part 2, the Monty Hall problem is analyzed digitally. To ensure the generality of the digital approach and demonstrate its reliability and productivity, the Monty Hall problem is extended and generalized in parts 3 and 4 to related cases in light of the axioms of probability theory. In the full mapping of the mathematical structure of the Monty Hall problem and any extensions thereof, a digital or non-quantitative skeleton is fleshed out by a quantitative component. The pertinent mathematical equations are developed and presented and illustrated by means of examples.展开更多
This paper is concerned with statistical theory of turbulence by the late lamented Dr. Shunichi Tsugé.? The theory has been applied to the primary flow through a grid fixed vertically with respect to the horizont...This paper is concerned with statistical theory of turbulence by the late lamented Dr. Shunichi Tsugé.? The theory has been applied to the primary flow through a grid fixed vertically with respect to the horizontal axis of the wind tunnel.?The first analytical solution has been obtained and explained the well-known “the inverse-linear decay law” of the turbulent intensity.? It is believed that the present result is the first exact solution in the theory of turbulence.展开更多
The issue of dropping the random force f(i) and the arbitrariness of choosing the basic variable in the variational approach to turbulence closure problem, pointed out recently by the Russian scientists Bazdenkov and ...The issue of dropping the random force f(i) and the arbitrariness of choosing the basic variable in the variational approach to turbulence closure problem, pointed out recently by the Russian scientists Bazdenkov and Kukharkin, are discussed. According to the mean-square estimation method, the random force f(i) should be dropped in the error expression of the LFP (Langevin-Fokker-Planck) model. However, f(i) is not neglected, its effect has been taken into account by the variational approach. In order to optimize the perturbation solution of the Liouville equation, the LFP model requires that the basic variable is as near to Gaussian as possible. Hence, the velocity, instead of the vorticity, should be chosen as the basic variable in the three-dimensional turbulence. Although the LFP model and the zero-order Gaussian term of PDF (probability density function) imply whiteness assumption (zero correlation time of f(i)), the higher-order non-Gaussian terms of PDF correspond to the nonwhiteness of turbulence dynamics, the variational approach does calculate the nonwhiteness effect properly.展开更多
In this paper we examine the large deviations principle (LDP) for sequences of classic Cramér-Lundberg risk processes under suitable time and scale modifications, and also for a wide class of claim distributions ...In this paper we examine the large deviations principle (LDP) for sequences of classic Cramér-Lundberg risk processes under suitable time and scale modifications, and also for a wide class of claim distributions including (the non-super- exponential) exponential claims. We prove two large deviations principles: first, we obtain the LDP for risk processes on D∈[0,1] with the Skorohod topology. In this case, we provide an explicit form for the rate function, in which the safety loading condition appears naturally. The second theorem allows us to obtain the LDP for Aggregate Claims processes on D∈[0,∞) with a different time-scale modification. As an application of the first result we estimate the ruin probability, and for the second result we work explicit calculations for the case of exponential claims.展开更多
In this research we are going to define two new concepts: a) “The Potential of Events” (EP) and b) “The Catholic Information” (CI). The term CI derives from the ancient Greek language and declares all the Catholic...In this research we are going to define two new concepts: a) “The Potential of Events” (EP) and b) “The Catholic Information” (CI). The term CI derives from the ancient Greek language and declares all the Catholic (general) Logical Propositions (<img src="Edit_5f13a4a5-abc6-4bc5-9e4c-4ff981627b2a.png" width="33" height="21" alt="" />) which will true for every element of a set A. We will study the Riemann Hypothesis in two stages: a) By using the EP we will prove that the distribution of events e (even) and o (odd) of Square Free Numbers (SFN) on the axis Ax(N) of naturals is Heads-Tails (H-T) type. b) By using the CI we will explain the way that the distribution of prime numbers can be correlated with the non-trivial zeros of the function <em>ζ</em>(<em>s</em>) of Riemann. The Introduction and the Chapter 2 are necessary for understanding the solution. In the Chapter 3 we will present a simple method of forecasting in many very useful applications (e.g. financial, technological, medical, social, etc) developing a generalization of this new, proven here, theory which we finally apply to the solution of RH. The following Introduction as well the Results with the Discussion at the end shed light about the possibility of the proof of all the above. The article consists of 9 chapters that are numbered by 1, 2, …, 9.展开更多
The purpose of the present study is to investigate the presence of multi-fractal behaviours in the traffic time series not only by statistical approaches but also by geometrical approaches. The pointwisc Hǒlder expon...The purpose of the present study is to investigate the presence of multi-fractal behaviours in the traffic time series not only by statistical approaches but also by geometrical approaches. The pointwisc Hǒlder exponent of a function is calculated by developing an algorithm for the numerical evaluation of HSlder exponent of time series. The traffic time series observed on the Beijing Yuquanying highway are analysed. The results from all these methods indicate that the traffic data exhibit the multi-fractal behaviour.展开更多
This article B is almost autonomous because it can be read independently from the first published article A [1] using only a few parts of the article A. Be-low are given instructions so to need the reader study only o...This article B is almost autonomous because it can be read independently from the first published article A [1] using only a few parts of the article A. Be-low are given instructions so to need the reader study only on few places of the article A. Also, in the part A of Introduction, here, you will find simple and useful definitions and the strategy we are going to follow as well useful new theorems (also and in Section 5, which have been produced in this solution). So the published solution of twin’s problem can now be easily understood. The inequalities (4.17), (4.18) of Article A are proved here in Section 4 by a new clear method, without the possible ambiguity of the text between the relations (4.14), (4.16) of the Article A. Also we complete the proof for the twin’s distri-bution which we use. At the end here are presented the Conclusions, the No-menclatures and the numerical control of the proof, which is probably useful as well in coding methods. For a general and convincing picture is sufficient, a study from the beginning of this article B until the end of the part A of the In-troduction here as well a general glance on the Section 5 and on the Conclu-sions below.展开更多
基金2023 General Project of Philosophy and Social Science Research in Universities of Jiangsu Province“Exploration and Practice of Mixed Teaching Model Oriented by Curriculum Ideology and Politics in the Course of Probability Theory and Mathematical Statistics”(2023SJYB1499)。
文摘With the rapid development of higher education in China,colleges and universities are facing new challenges and impacts in talent training.Probability Theory and Mathematical Statistics is one of the important courses in higher education for science and engineering majors and economics and management majors.Its critical role in cultivating students’thinking skills and improving their problem-solving skills is self-evident.Course ideological and political education construction is an important link in college talent training work.Combining ideological and political education with course teaching can help students establish correct value concepts and play a certain role in improving their comprehensive ability and quality.At present,the construction of ideological and political education in the Probability Theory and Mathematical Statistics course still faces some problems,mainly manifested in the lack of attention paid by teachers to course ideological and political education,insufficient exploitation of ideological and political elements,and the simplification of ideological and political education implementation methods.In order to comprehensively deepen the construction of course ideological and political education in line with the actual needs of Probability Theory and Mathematical Statistics course teaching,we should strengthen the construction of teacher teams,improve teachers’ability to carry out course ideological and political education,integrate educational resources,develop educational resources for ideological and political education,and innovate teaching methods to improve the overall effect of ideological and political education integration.
文摘With the illustration of a specific problem, this paper demonstrates that using Monte Carlo Simulation technology will improve intuitive effect of teaching Probability and Mathematical Statistics course, and save instructors' effort as well.And it is estimated that Monte Carlo Simulation technology will be one of the major teaching methods for Probability and Mathematical Statistics course in the future.
文摘In this paper, we conduct research on the applications of advanced mathematics on the mathematical modeling and the inner connections with linear algebra and the probability statistics. Aiming at model in mathematical modeling and solving and model of evaluation and promotion of the two links, put forward the "bystander" and "the authorities" this two characters, and points out that excellent mathematical modeling participants should have "from a bystander to the authorities" and "from the authorities to return to bystanders" two-way role transformation ability. Great situation in mathematics teaching, by means of the mathematical modeling formed in the development of the teachers, as well as the teaching thought, teaching experience and achievements, the onward march of mathematical experiment should be faster than mathematical modeling. Our research provides the new paradigm for the math development which will be meaningful.
文摘This is a brief review of alternative methods of problem-solving in geoscience with emphasis on the role of mathematical geology. It is desirable to maintain a clear-cut distinction between reliable facts which can be stored in data banks and concepts that can be incorporated in the specifications of statistical models designed for specific purposes. If possible, subjective probabilities should be incorporated in hypotheses that are to be tested by statistical inference.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11005041)the Natural Science Foundation of Fujian Province, China (Grant No. 2010J05007)+2 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China (Grant No. 2010-1561)the Basic Science Research Foundation, China (Grant No. JB-SJ1005)the Science Research Fund of Huaqiao University, China (including the support forHuang (Grant No. 11BS207))
文摘On the basis of the entropy of incomplete statistics (IS) and the joint probability factorization condition, two controversial problems existing in IS are investigated: one is what expression of the internal energy is reasonable for a composite system and the other is whether the traditional zeroth law of thermodynamics is suitable for IS. Some new equivalent expressions of the internal energy of a composite system are derived through accurate mathematical calculation. Moreover, a self-consistent calculation is used to expound that the zeroth law of thermodynamics is also suitable for IS, but it cannot be proven theoretically. Finally, it is pointed out that the generalized zeroth law of thermodynamics for incomplete nonextensive statistics is unnecessary and the nonextensive assumptions for the composite internal energy will lead to mathematical contradiction.
文摘In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped in detail. It is styled here as Monty Hall 1.0. The proposed analysis was then generalized to related cases involving any number of doors (d), cars (c), and opened doors (o) (Monty Hall 2.0) and 1 specific case involving more than 1 picked door (p) (Monty Hall 3.0). In cognitive terms, this analysis was interpreted in function of the presumed digital nature of rational thought and language. In the present paper, Monty Hall 1.0 and 2.0 are briefly reviewed (§§2-3). Additional generalizations of the problem are then presented in §§4-7. They concern expansions of the problem to the following items: (1) to any number of picked doors, with p denoting the number of doors initially picked and q the number of doors picked when switching doors after doors have been opened to reveal goats (Monty Hall 3.0;see §4);(3) to the precise conditions under which one’s chances increase or decrease in instances of Monty Hall 3.0 (Monty Hall 3.2;see §6);and (4) to any number of switches of doors (s) (Monty Hall 4.0;see §7). The afore-mentioned article in APM, Vol. 1, No. 4 may serve as a useful introduction to the analysis of the higher variations of the Monty Hall problem offered in the present article. The body of the article is by Leo Depuydt. An appendix by Richard D. Gill (see §8) provides additional context by building a bridge to modern probability theory in its conventional notation and by pointing to the benefits of certain interesting and relevant tools of computation now available on the Internet. The cognitive component of the earlier investigation is extended in §9 by reflections on the foundations of mathematics. It will be proposed, in the footsteps of George Boole, that the phenomenon of mathematics needs to be defined in empirical terms as something that happens to the brain or something that the brain does. It is generally assumed that mathematics is a property of nature or reality or whatever one may call it. There is not the slightest intention in this paper to falsify this assumption because it cannot be falsified, just as it cannot be empirically or positively proven. But there is no way that this assumption can be a factual observation. It can be no more than an altogether reasonable, yet fully secondary, inference derived mainly from the fact that mathematics appears to work, even if some may deem the fact of this match to constitute proof. On the deepest empirical level, mathematics can only be directly observed and therefore directly analyzed as an activity of the brain. The study of mathematics therefore becomes an essential part of the study of cognition and human intelligence. The reflections on mathematics as a phenomenon offered in the present article will serve as a prelude to planned articles on how to redefine the foundations of probability as one type of mathematics in cognitive fashion and on how exactly Boole’s theory of probability subsumes, supersedes, and completes classical probability theory. §§2-7 combined, on the one hand, and §9, on the other hand, are both self-sufficient units and can be read independently from one another. The ultimate design of the larger project of which this paper is part remains the increase of digitalization of the analysis of rational thought and language, that is, of (rational, not emotional) human intelligence. To reach out to other disciplines, an effort is made to describe the mathematics more explicitly than is usual.
文摘The Monty Hall problem has received its fair share of attention in mathematics. Recently, an entire monograph has been devoted to its history. There has been a multiplicity of approaches to the problem. These approaches are not necessarily mutually exclusive. The design of the present paper is to add one more approach by analyzing the mathematical structure of the Monty Hall problem in digital terms. The structure of the problem is described as much as possible in the tradition and the spirit—and as much as possible by means of the algebraic conventions—of George Boole’s Investigation of the Laws of Thought (1854), the Magna Charta of the digital age, and of John Venn’s Symbolic Logic (second edition, 1894), which is squarely based on Boole’s Investigation and elucidates it in many ways. The focus is not only on the digital-mathematical structure itself but also on its relation to the presumed digital nature of cognition as expressed in rational thought and language. The digital approach is outlined in part 1. In part 2, the Monty Hall problem is analyzed digitally. To ensure the generality of the digital approach and demonstrate its reliability and productivity, the Monty Hall problem is extended and generalized in parts 3 and 4 to related cases in light of the axioms of probability theory. In the full mapping of the mathematical structure of the Monty Hall problem and any extensions thereof, a digital or non-quantitative skeleton is fleshed out by a quantitative component. The pertinent mathematical equations are developed and presented and illustrated by means of examples.
文摘This paper is concerned with statistical theory of turbulence by the late lamented Dr. Shunichi Tsugé.? The theory has been applied to the primary flow through a grid fixed vertically with respect to the horizontal axis of the wind tunnel.?The first analytical solution has been obtained and explained the well-known “the inverse-linear decay law” of the turbulent intensity.? It is believed that the present result is the first exact solution in the theory of turbulence.
基金The work is supported by the National Basic Research Program "Non-linear Sciences the National Natural Science Foundation of China
文摘The issue of dropping the random force f(i) and the arbitrariness of choosing the basic variable in the variational approach to turbulence closure problem, pointed out recently by the Russian scientists Bazdenkov and Kukharkin, are discussed. According to the mean-square estimation method, the random force f(i) should be dropped in the error expression of the LFP (Langevin-Fokker-Planck) model. However, f(i) is not neglected, its effect has been taken into account by the variational approach. In order to optimize the perturbation solution of the Liouville equation, the LFP model requires that the basic variable is as near to Gaussian as possible. Hence, the velocity, instead of the vorticity, should be chosen as the basic variable in the three-dimensional turbulence. Although the LFP model and the zero-order Gaussian term of PDF (probability density function) imply whiteness assumption (zero correlation time of f(i)), the higher-order non-Gaussian terms of PDF correspond to the nonwhiteness of turbulence dynamics, the variational approach does calculate the nonwhiteness effect properly.
文摘In this paper we examine the large deviations principle (LDP) for sequences of classic Cramér-Lundberg risk processes under suitable time and scale modifications, and also for a wide class of claim distributions including (the non-super- exponential) exponential claims. We prove two large deviations principles: first, we obtain the LDP for risk processes on D∈[0,1] with the Skorohod topology. In this case, we provide an explicit form for the rate function, in which the safety loading condition appears naturally. The second theorem allows us to obtain the LDP for Aggregate Claims processes on D∈[0,∞) with a different time-scale modification. As an application of the first result we estimate the ruin probability, and for the second result we work explicit calculations for the case of exponential claims.
文摘In this research we are going to define two new concepts: a) “The Potential of Events” (EP) and b) “The Catholic Information” (CI). The term CI derives from the ancient Greek language and declares all the Catholic (general) Logical Propositions (<img src="Edit_5f13a4a5-abc6-4bc5-9e4c-4ff981627b2a.png" width="33" height="21" alt="" />) which will true for every element of a set A. We will study the Riemann Hypothesis in two stages: a) By using the EP we will prove that the distribution of events e (even) and o (odd) of Square Free Numbers (SFN) on the axis Ax(N) of naturals is Heads-Tails (H-T) type. b) By using the CI we will explain the way that the distribution of prime numbers can be correlated with the non-trivial zeros of the function <em>ζ</em>(<em>s</em>) of Riemann. The Introduction and the Chapter 2 are necessary for understanding the solution. In the Chapter 3 we will present a simple method of forecasting in many very useful applications (e.g. financial, technological, medical, social, etc) developing a generalization of this new, proven here, theory which we finally apply to the solution of RH. The following Introduction as well the Results with the Discussion at the end shed light about the possibility of the proof of all the above. The article consists of 9 chapters that are numbered by 1, 2, …, 9.
文摘The purpose of the present study is to investigate the presence of multi-fractal behaviours in the traffic time series not only by statistical approaches but also by geometrical approaches. The pointwisc Hǒlder exponent of a function is calculated by developing an algorithm for the numerical evaluation of HSlder exponent of time series. The traffic time series observed on the Beijing Yuquanying highway are analysed. The results from all these methods indicate that the traffic data exhibit the multi-fractal behaviour.
文摘This article B is almost autonomous because it can be read independently from the first published article A [1] using only a few parts of the article A. Be-low are given instructions so to need the reader study only on few places of the article A. Also, in the part A of Introduction, here, you will find simple and useful definitions and the strategy we are going to follow as well useful new theorems (also and in Section 5, which have been produced in this solution). So the published solution of twin’s problem can now be easily understood. The inequalities (4.17), (4.18) of Article A are proved here in Section 4 by a new clear method, without the possible ambiguity of the text between the relations (4.14), (4.16) of the Article A. Also we complete the proof for the twin’s distri-bution which we use. At the end here are presented the Conclusions, the No-menclatures and the numerical control of the proof, which is probably useful as well in coding methods. For a general and convincing picture is sufficient, a study from the beginning of this article B until the end of the part A of the In-troduction here as well a general glance on the Section 5 and on the Conclu-sions below.