期刊文献+
共找到270,344篇文章
< 1 2 250 >
每页显示 20 50 100
Research on the Stability Analysis Method of DC Microgrid Based on Bifurcation and Strobe Theory
1
作者 Wei Chen Nan Qiu Xusheng Yang 《Energy Engineering》 EI 2024年第4期987-1005,共19页
During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model... During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model of a DC microgrid,study the effects of the converter sag coefficient,input voltage,and load resistance on the microgrid stability,and reveal the oscillation mechanism of a DC microgrid caused by a single source.Then,a DC microgrid stability analysis method based on the combination of bifurcation and strobe is used to analyze how the aforementioned parameters influence the oscillation characteristics of the system.Finally,the stability region of the system is obtained by the Jacobi matrix eigenvalue method.Grid simulation verifies the feasibility and effectiveness of the proposed method. 展开更多
关键词 DC microgrid bifurcation nonlinear dynamics stability analysis oscillation characteristics
下载PDF
Systems Theory-Driven Framework for AI Integration into the Holistic Material Basis Research of Traditional Chinese Medicine 被引量:1
2
作者 Jingqi Zeng Xiaobin Jia 《Engineering》 SCIE EI CAS CSCD 2024年第9期28-50,共23页
This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhe... This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles.Utilizing the System Function Decoding Model(SFDM),the research progresses through define,quantify,infer,and validate phases to systematically explore TCM’s material basis.It employs a dual analytical approach that combines top-down,systems theory-guided perspectives with bottom-up,elements-structure-function methodologies,provides comprehensive insights into TCM’s holistic material basis.Moreover,the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components,proposing two specific AIdriven technical applications.This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology. 展开更多
关键词 Artificial intelligence Systems theory Traditional Chinese medicine Material basis BOTTOM-UP
下载PDF
Transient response of doubly-curved bio-inspired composite shells resting on viscoelastic foundation subject to blast load using improved first-order shear theory and isogeometric approach 被引量:1
3
作者 Thuy Tran Thi Thu Tu Nguyen Anh +1 位作者 Hue Nguyen Thi Hong Nguyen Thi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期171-193,共23页
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties... Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures. 展开更多
关键词 Blast load Modified first-order shear theory Biological composite structures
下载PDF
Timing theory integrated nursing combined behavior change integrated theory of nursing on primiparous influence 被引量:1
4
作者 Yan-Xia He Yang Lv +2 位作者 Ting-Ting Lan Fang Deng Yuan-Yuan Zhang 《World Journal of Clinical Cases》 SCIE 2024年第2期293-301,共9页
BACKGROUND The comprehension and utilization of timing theory and behavior change can offer a more extensive and individualized provision of support and treatment alternatives for primipara.This has the potential to e... BACKGROUND The comprehension and utilization of timing theory and behavior change can offer a more extensive and individualized provision of support and treatment alternatives for primipara.This has the potential to enhance the psychological well-being and overall quality of life for primipara,while also furnishing healthcare providers with efficacious interventions to tackle the psychological and physiological obstacles encountered during the stages of pregnancy and postpartum.AIM To explore the effect of timing theory combined with behavior change on selfefficacy,negative emotions and quality of life in patients with primipara.METHODS A total of 80 primipara cases were selected and admitted to our hospital between August 2020 and May 2022.These cases were divided into two groups,namely the observation group and the control group,with 40 cases in each group.The nursing interventions differed between the two groups,with the control group receiving routine nursing and the observation group receiving integrated nursing based on the timing theory and behavior change.The study aimed to compare the pre-and post-nursing scores of Chinese Perceived Stress Scale(CPSS),Edinburgh Postpartum Depression Scale(EPDS),Self-rating Anxiety Scale(SAS),breast milk knowledge,self-efficacy,and SF-36 quality of life in both groups.RESULTS After nursing,the CPSS,EPDS,and SAS scores of the two groups was significantly lower than that before nursing,and the CPSS,EPDS,and SAS scores of the observation group was significantly lower than that of the control group(P=0.002,P=0.011,and P=0.001 respectively).After nursing,the breastfeeding knowledge mastery,selfefficacy,and SF-36 quality of life scores was significantly higher than that before nursing,and the breastfeeding knowledge mastery(P=0.013),self-efficacy(P=0.008),and SF-36 quality of life(P=0.011)scores of the observation group was significantly higher than that of the control group.CONCLUSION The integration of timing theory and behavior change integrated theory has been found to be an effective approach in alleviating negative mood and stress experienced by primipara individuals,while also enhancing their selfefficacy and overall quality of life.This study focuses on the key concepts of timing theory,behavior change,primipara individuals,negative mood,and quality of life. 展开更多
关键词 Timing theory Behavior change PRIMIPARA Bad mood Quality of life
下载PDF
Enhancing the resolution of sparse rock property measurements using machine learning and random field theory 被引量:1
5
作者 Jiawei Xie Jinsong Huang +3 位作者 Fuxiang Zhang Jixiang He Kaifeng Kang Yunqiang Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3924-3936,共13页
The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad... The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China. 展开更多
关键词 Wireline logs Core characterization Compressional wave travel time Machine learning Random field theory
下载PDF
Bifurcation analysis and control study of improved full-speed differential model in connected vehicle environment
6
作者 艾文欢 雷正清 +2 位作者 李丹洋 方栋梁 刘大为 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期245-266,共22页
In recent years, the traffic congestion problem has become more and more serious, and the research on traffic system control has become a new hot spot. Studying the bifurcation characteristics of traffic flow systems ... In recent years, the traffic congestion problem has become more and more serious, and the research on traffic system control has become a new hot spot. Studying the bifurcation characteristics of traffic flow systems and designing control schemes for unstable pivots can alleviate the traffic congestion problem from a new perspective. In this work, the full-speed differential model considering the vehicle network environment is improved in order to adjust the traffic flow from the perspective of bifurcation control, the existence conditions of Hopf bifurcation and saddle-node bifurcation in the model are proved theoretically, and the stability mutation point for the stability of the transportation system is found. For the unstable bifurcation point, a nonlinear system feedback controller is designed by using Chebyshev polynomial approximation and stochastic feedback control method. The advancement, postponement, and elimination of Hopf bifurcation are achieved without changing the system equilibrium point, and the mutation behavior of the transportation system is controlled so as to alleviate the traffic congestion. The changes in the stability of complex traffic systems are explained through the bifurcation analysis, which can better capture the characteristics of the traffic flow. By adjusting the control parameters in the feedback controllers, the influence of the boundary conditions on the stability of the traffic system is adequately described, and the effects of the unstable focuses and saddle points on the system are suppressed to slow down the traffic flow. In addition, the unstable bifurcation points can be eliminated and the Hopf bifurcation can be controlled to advance, delay, and disappear,so as to realize the control of the stability behavior of the traffic system, which can help to alleviate the traffic congestion and describe the actual traffic phenomena as well. 展开更多
关键词 bifurcation analysis vehicle queuing bifurcation control Hopf bifurcation
下载PDF
Differences and Correlations of Morphological and Hemodynamic Parameters between Anterior Circulation Bifurcation and Side-wall Aneurysms
7
作者 Kai-kai GUO Chang-ya LIU +4 位作者 Gao-hui LI Jian-ping XIANG Xiao-chang LENG Yi-ke CAI Xue-bin HU 《Current Medical Science》 SCIE CAS 2024年第2期391-398,共8页
Objective:The objective of this research was to explore the difference and correlation of the morphological and hemodynamic features between sidewall and bifurcation aneurysms in anterior circulation arteries,utilizin... Objective:The objective of this research was to explore the difference and correlation of the morphological and hemodynamic features between sidewall and bifurcation aneurysms in anterior circulation arteries,utilizing computational fluid dynamics as a tool for analysis.Methods:In line with the designated inclusion criteria,this study covered 160 aneurysms identified in 131 patients who received treatment at Union Hospital of Tongji Medical College,Huazhong University of Science and Technology,China,from January 2021 to September 2022.Utilizing follow-up digital subtraction angiography(DSA)data,these cases were classified into two distinct groups:the sidewall aneurysm group and the bifurcation aneurysm group.Morphological and hemodynamic parameters in the immediate preoperative period were meticulously calculated and examined in both groups using a three-dimensional DSA reconstruction model.Results:No significant differences were found in the morphological or hemodynamic parameters of bifurcation aneurysms at varied locations within the anterior circulation.However,pronounced differences were identified between sidewall and bifurcation aneurysms in terms of morphological parameters such as the diameter of the parent vessel(Dvessel),inflow angle(θF),and size ratio(SR),as well as the hemodynamic parameter of inflow concentration index(ICI)(P<0.001).Notably,only the SR exhibited a significant correlation with multiple hemodynamic parameters(P<0.001),while the ICI was closely related to several morphological parameters(R>0.5,P<0.001).Conclusions:The significant differences in certain morphological and hemodynamic parameters between sidewall and bifurcation aneurysms emphasize the importance to contemplate variances in threshold values for these parameters when evaluating the risk of rupture in anterior circulation aneurysms.Whether it is a bifurcation or sidewall aneurysm,these disparities should be considered.The morphological parameter SR has the potential to be a valuable clinical tool for promptly distinguishing the distinct rupture risks associated with sidewall and bifurcation aneurysms. 展开更多
关键词 SIDEWALL bifurcation unruptured aneurysms computational fluid dynamics
下载PDF
Bifurcation Analysis Reveals Solution Structures of Phase Field Models
8
作者 Xinyue Evelyn Zhao Long-Qing Chen +1 位作者 Wenrui Hao Yanxiang Zhao 《Communications on Applied Mathematics and Computation》 EI 2024年第1期64-89,共26页
The phase field method is playing an increasingly important role in understanding and predicting morphological evolution in materials and biological systems.Here,we develop a new analytical approach based on the bifur... The phase field method is playing an increasingly important role in understanding and predicting morphological evolution in materials and biological systems.Here,we develop a new analytical approach based on the bifurcation analysis to explore the mathematical solution structure of phase field models.Revealing such solution structures not only is of great mathematical interest but also may provide guidance to experimentally or computationally uncover new morphological evolution phenomena in materials undergoing electronic and structural phase transitions.To elucidate the idea,we apply this analytical approach to three representative phase field equations:the Allen-Cahn equation,the Cahn-Hilliard equation,and the Allen-Cahn-Ohta-Kawasaki system.The solution structures of these three phase field equations are also verified numerically by the homotopy continuation method. 展开更多
关键词 Phase field modeling bifurcationS Multiple solutions
下载PDF
Bifurcation Analysis of a Nonlinear Vibro-Impact System with an Uncertain Parameter via OPA Method
9
作者 Dongmei Huang Dang Hong +2 位作者 Wei Li Guidong Yang Vesna Rajic 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期509-524,共16页
In this paper,the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated.Firstly,by means of the orthogonal polynomial approximation(... In this paper,the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated.Firstly,by means of the orthogonal polynomial approximation(OPA)method,the nonlinear damping and stiffness are expanded into the linear combination of the state variable.The condition for the appearance of the vibro-impact phenomenon is to be transformed based on the calculation of themean value.Afterwards,the stochastic vibro-impact systemcan be turned into an equivalent high-dimensional deterministic non-smooth system.Two different Poincarésections are chosen to analyze the bifurcation properties and the impact numbers are identified for the periodic response.Consequently,the numerical results verify the effectiveness of the approximation method for analyzing the considered nonlinear system.Furthermore,the bifurcation properties of the system with an uncertain parameter are explored through the high-dimensional deterministic system.It can be found that the excitation frequency can induce period-doubling bifurcation and grazing bifurcation.Increasing the randomintensitymay result in a diffusion-based trajectory and the impact with the constraint plane,which induces the topological behavior of the non-smooth system to change drastically.It is also found that grazing bifurcation appears in advance with increasing of the random intensity.The stronger impulse force can result in the appearance of the diffusion phenomenon. 展开更多
关键词 Orthogonal polynomial approximation vibro-impact systems non-smooth systems grazing bifurcation
下载PDF
Charge self-consistent dynamical mean field theory calculations incombination with linear combination of numerical atomic orbitalsframework based density functional theory
10
作者 Xin Qu Peng Xu +6 位作者 Zhiyong Liu Jintao Wang Fei Wang Wei Huang Zhongxin Li Weichang Xu Xinguo Ren 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期62-69,共8页
We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implemen... We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations. 展开更多
关键词 dynamical mean field theory density functional theory strongly correlated electrons
下载PDF
Mechanism analysis of regulating Turing instability and Hopf bifurcation of malware propagation in mobile wireless sensor networks
11
作者 黄习习 肖敏 +3 位作者 Leszek Rutkowski 包海波 黄霞 曹进德 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期125-140,共16页
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation... A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs. 展开更多
关键词 mobile wireless sensor networks REACTION-DIFFUSION Hopf bifurcation hybrid control
下载PDF
Bifurcations, Analytical and Non-Analytical Traveling Wave Solutions of (2 + 1)-Dimensional Nonlinear Dispersive Boussinesq Equation
12
作者 Dahe Feng Jibin Li Airen Zhou 《Applied Mathematics》 2024年第8期543-567,共25页
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ... For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation. 展开更多
关键词 (2 + 1)-Dimensional Nonlinear Dispersive Boussinesq Equation bifurcationS Phase Portrait Analytical Periodic Wave Solution Periodic Cusp Wave Solution
下载PDF
Stochastic Bifurcation of an SIS Epidemic Model with Treatment and Immigration
13
作者 Weipeng Zhang Dan Gu 《Journal of Applied Mathematics and Physics》 2024年第6期2254-2280,共27页
In this paper, we investigate an SIS model with treatment and immigration. Firstly, the two-dimensional model is simplified by using the stochastic averaging method. Then, we derive the local stability of the stochast... In this paper, we investigate an SIS model with treatment and immigration. Firstly, the two-dimensional model is simplified by using the stochastic averaging method. Then, we derive the local stability of the stochastic system by computing the Lyapunov exponent of the linearized system. Further, the global stability of the stochastic model is analyzed based on the singular boundary theory. Moreover, we prove that the model undergoes a Hopf bifurcation and a pitchfork bifurcation. Finally, several numerical examples are provided to illustrate the theoretical results. . 展开更多
关键词 Epidemic Model Stochastic Averaging Method Singular Boundary theory Stochastic bifurcation
下载PDF
Contract Mechanism of Water Environment Regulation for Small and Medium Sized Enterprises Based on Optimal Control Theory
14
作者 Shuang Zhao Hongbin Gu +2 位作者 Lianfang Xue Dongsheng Wang Bin Huang 《Journal of Water Resource and Protection》 CAS 2024年第7期538-556,共20页
The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of trea... The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed. 展开更多
关键词 Optimal Control theory Small and Medium-Sized Enterprises Water Environment Regulation Contract Mechanism
下载PDF
Functional microfluidics:theory,microfabrication,and applications
15
作者 Mingzhu Xie Ziheng Zhan +4 位作者 Yinfeng Li Junkai Zhao Ce Zhang Zhaolong Wang Zuankai Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期140-173,共34页
Microfluidic devices are composed of microchannels with a diameter ranging from ten to a few hundred micrometers.Thus,quite a small(10-9–10-18l)amount of liquid can be manipulated by such a precise system.In the past... Microfluidic devices are composed of microchannels with a diameter ranging from ten to a few hundred micrometers.Thus,quite a small(10-9–10-18l)amount of liquid can be manipulated by such a precise system.In the past three decades,significant progress in materials science,microfabrication,and various applications has boosted the development of promising functional microfluidic devices.In this review,the recent progress on novel microfluidic devices with various functions and applications is presented.First,the theory and numerical methods for studying the performance of microfluidic devices are briefly introduced.Then,materials and fabrication methods of functional microfluidic devices are summarized.Next,the recent significant advances in applications of microfluidic devices are highlighted,including heat sinks,clean water production,chemical reactions,sensors,biomedicine,capillaric circuits,wearable electronic devices,and microrobotics.Finally,perspectives on the challenges and future developments of functional microfluidic devices are presented.This review aims to inspire researchers from various fields engineering,materials,chemistry,mathematics,physics,and more—to collaborate and drive forward the development and applications of functional microfluidic devices,specifically for achieving carbon neutrality. 展开更多
关键词 capillary theory functional devices functional microfluidics
下载PDF
Optimized numerical density functional theory calculation of rotationally symmetric jellium model systems
16
作者 Guangdi Zhang Li Mao Hongxing Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期349-355,共7页
In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.I... In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.In our research,we propose an optimization method to expedite density functional theory(DFT)calculations for systems with large aspect ratios,such as metallic nanorods,nanowires,or scanning tunneling microscope tips.This method focuses on employing basis set to expand the electron density,Coulomb potential,and exchange-correlation potential.By precomputing integrals and caching redundant results,this expansion streamlines the integration process,significantly accelerating DFT computations.As a case study,we have applied this optimization to metallic nanorod systems of various radii and lengths,obtaining corresponding ground-state electron densities and potentials. 展开更多
关键词 density functional theory basis set integrals precomputation nanorod
下载PDF
Density functional theory study of B- and Si-doped carbons and their adsorption interactions with sulfur compounds
17
作者 Peng Guo Hong Zhang +1 位作者 Shuliang Dong Libao An 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期195-208,共14页
Understanding the adsorption interactions between carbon materials and sulfur compounds has far-reaching impacts,in addition to their well-known important role in energy storage and conversion,such as lithium-ion batt... Understanding the adsorption interactions between carbon materials and sulfur compounds has far-reaching impacts,in addition to their well-known important role in energy storage and conversion,such as lithium-ion batteries.In this paper,properties of intrinsic B or Si single-atom doped,and B-Si codoped graphene(GR)and graphdiyne(GDY)were investigated by using density functional theory-based calculations,in which the optimal doping configurations were explored for potential applications in adsorbing sulfur compounds.Results showed that both B or Si single-atom doping and B-Si codoping could substantially enhance the electron transport properties of GR and GDY,improving their surface activity.Notably,B and Si atoms displayed synergistic effects for the codoped configurations,where B-Si codoped GR/GDY exhibited much better performance in the adsorption of sulfurcontaining chemicals than single-atom doped systems.In addition,results demonstrated that,after B-Si codoping,the adsorption energy and charge transfer amounts of GDY with sulfur compounds were much larger than those of GR,indicating that B-Si codoped GDY might be a favorable material for more effectively interacting with sulfur reagents. 展开更多
关键词 ADSORPTION density functional theory DOPING graphdiyne GRAPHENE sulfur compounds
下载PDF
Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
18
作者 孙宗利 康艳霜 康艳梅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期594-603,共10页
Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean... Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean field treatment is taken into account by the simulation-based empirical correlations.The application of this method to confined argon in slit pore shows that its prediction agrees well with the simulation results,and that it performs better than the original PG theory as well as the local averaged density model(LADM).In its further application to the nano-fluidic films,the influences of fluid parameters and pore parameters on the thermal conductivity are calculated and investigated.It is found that both the local thermal conductivity and the overall thermal conductivity can be significantly modulated by these parameters.Specifically,in the supercritical states,the thermal conductivity of the confined fluid shows positive correlation to the bulk density as well as the temperature.However,when the bulk density is small,the thermal conductivity exhibits a decrease-increase transition as the temperature is increased.This is also the case in which the temperature is low.In fact,the decrease-increase transition in both the small-bulk-density and low-temperature cases arises from the capillary condensation in the pore.Furthermore,smaller pore width and/or stronger adsorption potential can raise the critical temperature for condensation,and then are beneficial to the enhancement of the thermal conductivity.These modulation behaviors of the local thermal conductivity lead immediately to the significant difference of the overall thermal conductivity in different phase regions. 展开更多
关键词 thermal conductivity nano-fluidic films density functional theory
下载PDF
The “Dead Universe” Theory: Natural Separation of Galaxies Driven by the Remnants of a Supermassive Dead Universe
19
作者 Joel Almeida 《Natural Science》 2024年第6期65-101,共37页
This article explores the dead universe theory as a novel interpretation for the origin and evolution of the universe, suggesting that our cosmos may have originated from the remnants of a preceding universe. This per... This article explores the dead universe theory as a novel interpretation for the origin and evolution of the universe, suggesting that our cosmos may have originated from the remnants of a preceding universe. This perspective challenges the conventional Big Bang theory, particularly concerning dark matter, the expansion of the universe, and the interpretation of phenomena such as gravitational waves. 展开更多
关键词 Dead Universe theory Heat Death of the Universe Big Bang theory Universe’s Ultimate Fate Universe Expansion Big Freeze Universe Cosmological Models End of Universe Theories Natural Galaxy Drift Future of the Universe Universe Cooling Down Cosmology and Entropy
下载PDF
Comparative study on phase transition behaviors of fractional molecular field theory and random-site Ising model
20
作者 刘婷玉 赵薇 +3 位作者 王涛 安小冬 卫来 黄以能 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期536-541,共6页
Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to ver... Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to verify the feasibility of this theory,this paper fits it to the Monte Carlo simulations of specific heat and susceptibility versus temperature of two-dimensional(2D)random-site Ising model(2D-RSIM).The results indicate that the FMFT deviates from the 2D-RSIM significantly.The main reason for the deviation is that the 2D-RSIM is a typical system of component random distribution,where the real order parameter is spatially heterogeneous and has no symmetry of space translation,but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation. 展开更多
关键词 phase transition molecular field theory Ising model Monte Carlo
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部