[Objective] The research aimed toexplore the method to obtain Hoxc8 pro- moter of Mongolian Sheep. [Method] Thermal asymmetric interlaced PCR was used to amplify the promoter sequence of Hoxc8 inMongolian Sheep. [Resu...[Objective] The research aimed toexplore the method to obtain Hoxc8 pro- moter of Mongolian Sheep. [Method] Thermal asymmetric interlaced PCR was used to amplify the promoter sequence of Hoxc8 inMongolian Sheep. [Result] The ob- tained sequence by usingthermal asymmetric interlaced PCRwas not ideal and the sequencing results were not matching to the known sequence. Though promoter se- quence of Hoxc8 in Mongolian Sheep was not obtained by thermal asymmetric in- terlaced PCR, but the results could provide references for the relevant studies in the future. [Conclusion] The research laid the foundation for further study on the methy- lation status Hoxc8 promoter in Mongolian Sheep.展开更多
Based on vibration analysis, single-layered graphene sheet (SLGS) with multiple attached nanoparticles is developed as nanoscale mass sensor in thermal environments. Graphene sensors are assumed to be in simplysuppo...Based on vibration analysis, single-layered graphene sheet (SLGS) with multiple attached nanoparticles is developed as nanoscale mass sensor in thermal environments. Graphene sensors are assumed to be in simplysupported configuration. Based on the nonlocal plate the- ory which incorporates size effects into the classical theory, closed-form expressions lot the frequencies and relative fre- quency shills of SLGS-based mass sensor are derived using the Galerkin method. The suggested model is justified by a good agreement between the results given by the present model and available data in literature. The effects of tem- perature difference, nonlocal parameter, the location of the nanoparticle and the number of nanoparticles on the relative frequency shift of the mass sensor are also elucidated. The obtained results show that the sensitivity of the SLGS- based mass sensor increases with increasing temperature difference.展开更多
Magnesia chrome bricks were prepared with fiLsed MgO- Cr2 O3 synthesized material, fused magnesite and :hrome ore as main starting materials. Nano-Al2O3 was tdded into refractories ( 2% , 4% and 6% in mass ) ;ubst...Magnesia chrome bricks were prepared with fiLsed MgO- Cr2 O3 synthesized material, fused magnesite and :hrome ore as main starting materials. Nano-Al2O3 was tdded into refractories ( 2% , 4% and 6% in mass ) ;ubstit,ting for Al203 micropowder. After m&ing and ;haping, the bricks were fired at 1 550 ℃, 1 600 91℃, t 650 ℃ and 1 750℃, respectively. The microstruc-ure , sintering property, mechanical properties, thermal ;kock resistance and shtg resistance of the specimens with he addition of nano-Al2O3 were investigated. The results indicate that the performance of brick with 4 mass% of nano-Al2O3 is greatly improred afier firing at 1 650 ℃.展开更多
This paper investigates the effects of substitution of Si for Ga on the martensitic transformation behaviours in Ni-Fe-Ga alloys by using optical metallographic microscope and differential scanning calorimetry (DSC)...This paper investigates the effects of substitution of Si for Ga on the martensitic transformation behaviours in Ni-Fe-Ga alloys by using optical metallographic microscope and differential scanning calorimetry (DSC) methods. The structure type of Ni55.5Fe18Ga26.5-xSix alloys is determined by x-ray diffraction (XRD), and the XRD patterns show the microstructure of Ni-Fe-Ga-Si alloys transformed from body-centred tetragonal martensite (with Si content x = 0) to body-centred cubic austenite (with x = 2) at room temperature. The martensitic transformation temperatures of the Ni55.sFelsGa26.5-xSi~ alloys decrease almost linearly with increasing Si content in the Si content range of x _~ 3. Thermal treatment also plays an important role on martensitic transformation temperatures in the Ni-Fe-Ga^Si alloy. The valence electronic concentrations, size factor, L21 degree of order and strength of parent phase influence the martensitic transformation temperatures of the Ni-Fe-Ga-Si alloys. An understanding of the relationship between martensitic transformation temperatures and Si content will be significant for designing an appropriate Ni-Fe-Ga-Si alloy for a specific application at a given temperature.展开更多
基金Supported by the Supporting Program of the"Eleventh Five-year Plan"for Sci&Tech Research of China(2006BDA13B08)National Natural Science Foundation of China(30960245)~~
文摘[Objective] The research aimed toexplore the method to obtain Hoxc8 pro- moter of Mongolian Sheep. [Method] Thermal asymmetric interlaced PCR was used to amplify the promoter sequence of Hoxc8 inMongolian Sheep. [Result] The ob- tained sequence by usingthermal asymmetric interlaced PCRwas not ideal and the sequencing results were not matching to the known sequence. Though promoter se- quence of Hoxc8 in Mongolian Sheep was not obtained by thermal asymmetric in- terlaced PCR, but the results could provide references for the relevant studies in the future. [Conclusion] The research laid the foundation for further study on the methy- lation status Hoxc8 promoter in Mongolian Sheep.
文摘Based on vibration analysis, single-layered graphene sheet (SLGS) with multiple attached nanoparticles is developed as nanoscale mass sensor in thermal environments. Graphene sensors are assumed to be in simplysupported configuration. Based on the nonlocal plate the- ory which incorporates size effects into the classical theory, closed-form expressions lot the frequencies and relative fre- quency shills of SLGS-based mass sensor are derived using the Galerkin method. The suggested model is justified by a good agreement between the results given by the present model and available data in literature. The effects of tem- perature difference, nonlocal parameter, the location of the nanoparticle and the number of nanoparticles on the relative frequency shift of the mass sensor are also elucidated. The obtained results show that the sensitivity of the SLGS- based mass sensor increases with increasing temperature difference.
文摘Magnesia chrome bricks were prepared with fiLsed MgO- Cr2 O3 synthesized material, fused magnesite and :hrome ore as main starting materials. Nano-Al2O3 was tdded into refractories ( 2% , 4% and 6% in mass ) ;ubstit,ting for Al203 micropowder. After m&ing and ;haping, the bricks were fired at 1 550 ℃, 1 600 91℃, t 650 ℃ and 1 750℃, respectively. The microstruc-ure , sintering property, mechanical properties, thermal ;kock resistance and shtg resistance of the specimens with he addition of nano-Al2O3 were investigated. The results indicate that the performance of brick with 4 mass% of nano-Al2O3 is greatly improred afier firing at 1 650 ℃.
基金State Scholarship Foundation of China(201406215002)Chinese National S&T Major Project(ZX06901)Tsinghua University Initiative Scientific Research Program(20121088038)~~
基金supported by the National Natural Science Foundation of China (Grant No. 10976007)the Fundamental Research Funds for the Central Universities (Grant Nos. ZYGX2009J046 and ZYGX2009X007)Royal Academy of Engineering-Research Exchanges with China and India Awards in UK
文摘This paper investigates the effects of substitution of Si for Ga on the martensitic transformation behaviours in Ni-Fe-Ga alloys by using optical metallographic microscope and differential scanning calorimetry (DSC) methods. The structure type of Ni55.5Fe18Ga26.5-xSix alloys is determined by x-ray diffraction (XRD), and the XRD patterns show the microstructure of Ni-Fe-Ga-Si alloys transformed from body-centred tetragonal martensite (with Si content x = 0) to body-centred cubic austenite (with x = 2) at room temperature. The martensitic transformation temperatures of the Ni55.sFelsGa26.5-xSi~ alloys decrease almost linearly with increasing Si content in the Si content range of x _~ 3. Thermal treatment also plays an important role on martensitic transformation temperatures in the Ni-Fe-Ga^Si alloy. The valence electronic concentrations, size factor, L21 degree of order and strength of parent phase influence the martensitic transformation temperatures of the Ni-Fe-Ga-Si alloys. An understanding of the relationship between martensitic transformation temperatures and Si content will be significant for designing an appropriate Ni-Fe-Ga-Si alloy for a specific application at a given temperature.