Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)va...Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)values of prepared thermally conductive polymer composites are still difficult to achieve expectations,which has become the bottleneck in the fields of thermally conductive polymer composites.Aimed at that,based on the accumulation of the previous research works by related researchers and our research group,this paper proposes three possible directions for breaking through the bottlenecks:(1)preparing and synthesizing intrinsically thermally conductive polymers,(2)reducing the interfacial thermal resistance in thermally conductive polymer composites,and(3)establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization.Also,the future development trends of the three above-mentioned directions are foreseen,hoping to provide certain basis and guidance for the preparation,researches and development of thermally conductive polymers and their composites.展开更多
SiCp/Cu composites with a compact microstructure were successfully fabricated by vacuum hot-pressing method. In order to suppress the detrimental interfacial reactions and ameliorate the interfacial bonding between co...SiCp/Cu composites with a compact microstructure were successfully fabricated by vacuum hot-pressing method. In order to suppress the detrimental interfacial reactions and ameliorate the interfacial bonding between copper and silicon carbide, molybdenum coating was deposited on the surface of silicon carbide by magnetron sputtering method and crystallized heat-treatment. The effects of the interfacial design on the thermo-physical properties of Si Cp/Cu composites were studied in detail. Thermal conductivity and expansion test results showed that silicon carbide particles coated with uniform and compact molybdenum coating have improved the comprehensive thermal properties of the Si Cp/Cu composites. Furthermore, the adhesion of the interface between silicon carbide and copper was significantly strengthened after molybdenum coating. Si Cp/Cu composites with a maximum thermal conductivity of 274.056 W/(m·K) and a coefficient of thermal expansion of 9 ppm/K were successfully prepared when the volume of silicon carbide was about 50%, and these Si Cp/Cu composites have potential applications for the electronic packageing of the high integration electronic devices.展开更多
To simultaneously endow thermal conductivity,high glass transition temperature(Tg)and healing capability to glass fiber/epoxy(GFREP)composite,dynamic crosslinked epoxy resin bearing reversibleβ-hydroxyl ester bonds w...To simultaneously endow thermal conductivity,high glass transition temperature(Tg)and healing capability to glass fiber/epoxy(GFREP)composite,dynamic crosslinked epoxy resin bearing reversibleβ-hydroxyl ester bonds was reinforced with boron nitride nanosheets modified glass fiber cloth(GFC@BNNSs).The in-plane heat conduction paths were constructed by electrostatic self-assembly of polyacrylic acid treated GFC and polyethyleneimine decorated BNNSs.Then,the GFC@BNNSs were impregnated with the mixture of lower concentration(3-glycidyloxypropyl)trimethoxysilane grafted BN micron sheets,3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate and hexahydro-4-methylphthalic anhydride,which accounted for establishing the through-plane heat transport pathways and avoiding serious deterioration of mechanical performances.The resultant GFREP composite containing less boron nitride particles(17.6 wt%)exhibited superior in-plane(3.29 W·m^(-1)·K^(-1))and through-plane(1.16 W·m^(-1)·K^(-1))thermal conductivities,as well as high Tg of 204℃(Tg of the unfilled epoxy=177℃).The reversible transesterification reaction enabled closure of interlaminar cracks within the composite,achieving decent healing efficiencies estimated by means of tensile strength(71.2%),electrical breakdown strength(83.6%)and thermal conductivity(69.1%).The present work overcame the disadvantages of conventional thermally conductive composites,and provided an efficient approach to prolong the life span of thermally conductive GFREP laminate for high-temperature resistant integrated circuit application.展开更多
Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger ...Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger negative TEC is used to combine with Al to obtain a low thermal expansion composite with high conductivity. The TEC of Al is reduced by 19%for a ratio Al:Y2Mo3O12 of 0.3118. When the mass ratio of Al:Y2Mo3O12 increases to 2.0000, the conductivity of the composite increases so much that a transformation from capacitance to pure resistance appears. The results suggest that Y2Mo3O12 plays a dominant role in the composite for low content of Al(presenting isolate particles), while the content of Al increases enough to contact each other, the composite presents mainly the property of Al. For the effect of high content Al, it is considered that Al is squeezed out of the cermets during the uniaxial pressure process to form a thin layer on the surface.展开更多
The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of...The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of different parts of the shell were observed by scanning electron microscopy and optical microscopy, and the thermophysical and mechanical properties of the shell were tested. The results show that there exists the segregation phenomenon between the Si C particulate and the liquid phase during thixoforming, the liquid phase flows from the shell, and the Si C particles accumulate at the bottom of the shell. The volume fraction of Si C decreases gradually from the bottom to the walls. Accordingly, the thermal conductivities of bottom center and walls are 178 and 164 W·m-1·K-1, the coefficients of thermal expansion(CTE) are 8.2×10-6 and 12.6×10-6 K-1, respectively. The flexural strength decreases slightly from 437 to 347 MPa. The microstructures and properties of the shell show gradient distribution.展开更多
Glass fibers(GFs)/epoxy laminated composites always present weak interlaminar shear strength(ILSS)and low cross-plane thermal conductivity coefficient(λ⊥).In this work,silica-sol,synthesized from tetraethyl orthosil...Glass fibers(GFs)/epoxy laminated composites always present weak interlaminar shear strength(ILSS)and low cross-plane thermal conductivity coefficient(λ⊥).In this work,silica-sol,synthesized from tetraethyl orthosilicate(TEOS)and KH-560 via sol-gel method,was employed to functionalize the surface of GFs(Si-GFs).Together with a spherical boron nitride(BNN-30),the thermally conductive BNN-30/Si-GFs/epoxy laminated composites were then fabricated.Results demonstrate that Si-sol is beneficial to the improvement of mechanical properties for epoxy laminated composites(especially for ILSS).The BNN-30/Si-GFs/epoxy laminated composites with 15 wt%BNN-30 fillers display the optimal comprehensive properties.In-planeλ(λ//)andλ⊥reach the maximum of 2.37 and 1.07 W.m-1.K-1,146.9%and 132.6%higher than those of SiGFs/epoxy laminated composites(λ//=0.96 W.m-1.K-1 andλ⊥=0.46 W.m-1K-1),respectively,and also about 10.8 and 4.9 times those of pure epoxy resin(λ//=λ⊥,0.22 W.m-1.K-1).And the heat-resistance index(THRI),dielectric constant(ε),dielectric loss(tanδ),breakdown strength(E0),surface resistivity(ρs)as well as volume resistivity(ρv)are 197.3℃,4.95,0.0046,22.3 kV.mm-1,1.8×1014Ω,and 2.1×1014Ω.cm,respectively.展开更多
As the miniaturization of electronic devices and complication of electronic packaging,there are growing demands for thermal interfacial materials with enhanced thermal conductivity and the capability to direct the hea...As the miniaturization of electronic devices and complication of electronic packaging,there are growing demands for thermal interfacial materials with enhanced thermal conductivity and the capability to direct the heat toward heat sink for highly efficient heat dissipation.Pitch-based carbon fiber(CF)with ultrahigh axial thermal conductivity and aspect ratios exhibits great potential for developing thermally conductive composites as TIMs.However,it is still hard to fabricate composites with aligned carbon fiber in a general approach to fully utilize its excellent axial thermal conductivity in specific direction.Here,three types of CF scaffolds with different oriented structure were developed via magnetic field-assisted Tetris-style stacking and carbonization process.By regulating the magnetic field direction and initial stacking density,the self-supporting CF scaffolds with horizontally aligned(HCS),diagonally aligned and vertically aligned(VCS)fibers were constructed.After embedding the polydimethylsiloxane(PDMS),the three composites exhibited unique heat transfer properties,and the HCS/PDMS and VCS/PDMS composites presented a high thermal conductivity of 42.18 and 45.01 W m^(−1)K^(−1)in fiber alignment direction,respectively,which were about 209 and 224 times higher than that of PDMS.The excellent thermal conductivity is mainly ascribed that the oriented CF scaffolds construct effective phonon transport pathway in the matrix.In addition,fishbone-shaped CF scaffold was also produced by multiple stacking and carbonization process,and the prepared composites exhibited a controlled heat transfer path,which can allow more versatility in the design of thermal management system.展开更多
The carbides and nitrides of transition metals known as“MXenes”refer to a fast-growing family of two-dimensional materials discovered in 2011.Thanks to their unique nanolayer structure,superior electrical,mechanical...The carbides and nitrides of transition metals known as“MXenes”refer to a fast-growing family of two-dimensional materials discovered in 2011.Thanks to their unique nanolayer structure,superior electrical,mechanical,and thermal properties,MXenes have shown great potential in addressing the critical overheating issues that jeopardize the performance,stability,and lifetime of high-energy-density components in modern devices such as microprocessors,integrated circuits,and capacitors,etc.The outstanding intrinsic thermal conductivity of MXenes has been proved by experimental and theoretical research.Numerous MXenes-enabled high thermal conductivity composites incorporated with polymer matrix have also been reported and widely used as thermal management materials.Considering the booming heat dissipation demands,MXenes-enabled thermal management material is an extremely valuable and scalable option for modern electronics industries.However,the fundamental thermal transport mechanisms behind the MXenes family remain unclear.The MXene thermal conductivity disparities between the theoretical prediction and experimental results are still significant.To better understand the thermal conduction in MXenes and provide more insights for engineering high-performance MXene thermal management materials,in this article,we summarize recent progress on thermal conductive MXenes.The essential factors that affect MXenes intrinsic thermal conductivities are tackled,selected MXenes-polymer composites are highlighted,and prospects and challenges are also discussed.展开更多
The miniaturization and high integration of devices demand significant thermal management materials.Current technologies for the thermal management of electronics show some limitations in the case of multiple chip arr...The miniaturization and high integration of devices demand significant thermal management materials.Current technologies for the thermal management of electronics show some limitations in the case of multiple chip arrays.A device in multiple chip array is affected by heat from adjacent devices,along with thermal conductive composite.To address this problem,we present a nano composite of aligned boron nitride(BN)nanosheet islands with porous polydimethylsiloxane(PDMS)foam to have mechanical stability and non-thermal interference.The islands of tetrahedrally-structured BN in the composite have a high thermal conductivity of 1.219 W·m^(-1)·K^(-1) in the through-plane direction(11.234W·m^(-1)·K^(-1)in the in-plane direction)with 16 wt.%loading of BN.On the other hand,porous PDMS foam has a low thermal conductivity of 0.0328W·m^(-1)·K^(-1) in the through-plane direction at 70%porosity.Heat pathways are then formed only in the structured BN islands of the composite.The porous PDMS foam can be applied as a thermal barrier between structured BN islands to inhibit thermal interference in multiple device arrays.Furthermore,this composite can maintain selective thermal dissipation performance with 70%tensile strain.Another beauty of the work is that it could have guided heat dissipation by assembling of multiple layers which have high vertical thermal conductive islands,while inhibiting thermal interference.The selective heat dissipating composite can be applied as a heatsink for multiple chip arrays electronics.展开更多
This study was pertained to the effects of Ti coating on diamond surfaces and Si addition into Al matrix on the thermal conductivity(TC) and the coefficient of thermal expansion(CTE) of diamond/Al composites by pr...This study was pertained to the effects of Ti coating on diamond surfaces and Si addition into Al matrix on the thermal conductivity(TC) and the coefficient of thermal expansion(CTE) of diamond/Al composites by pressure infiltration.The fracture surfaces,interface microstructures by metal electro-etching and interfacial thermal conductance of the composites prepared by two methods were compared.The results reveal that Ti coating on diamond surfaces and only12.2 wt% Si addition into Al matrix could both improve the interfacial bonding and increase the TCs of the composites.But the Ti coating layer introduces more interfacial thermal barrier at the diamond/Al interface compared to adding 12.2 wt% Si into Al matrix.The diamond/Al composite with 12.2 wt% Si addition exhibits maximum TC of 534 W·m^-1·K^-1and a very low CTE of 8.9×10^-6K^-1,while the coating Ti-diamond/Al composite has a TC of 514 W·m^-1·K^-1 and a CTE of 11.0×10^-6K^-1.展开更多
Influence of cryogenic thermal cycling treatment (from -120 ℃ to 120 ℃ at 1.3 × 10^-3 Pa) on the thermo- physical properties including thermal conductivity (TC), thermal diffusivity (TD), specific heat ...Influence of cryogenic thermal cycling treatment (from -120 ℃ to 120 ℃ at 1.3 × 10^-3 Pa) on the thermo- physical properties including thermal conductivity (TC), thermal diffusivity (TD), specific heat (SH) and coefficient of thermal expansion (CTE) ranging from room temperature to 1900 ℃ of carbon/carbon (C/C) composites in x-y and z directions were studied. Test results showed that fiber/matrix interracial debonding, fiber pull-out and microcracks occurred after the cryogenic thermal treatment and they increased significantly with the cycle number increasing, while cycled more than 30 times, the space ofmicrodefects reduced obviously due to the accumulation of cyclic thermal stress. TC, TD, SH and CTE of the cryogenic thermal cycling treated C/C composites were first decreased and then increased in both directions (x-y and z directions) with the increase of thermal cycles. A model regarding the heat conduction in cryogenic thermal cycling treated C/C composites was proposed.展开更多
Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial i...Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial intelligence and wearable electronics.In this work,silver nanowires(AgNWs)are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent,and boron nitride(BN)is performed to prepare BN nanosheets(BNNS)with the help of isopropyl alcohol and ultrasonication-assisted peeling method,which are compounded with aramid nanofibers(ANF)prepared by chemical dissociation,respectively,and the(BNNS/ANF)-(AgNWs/ANF)thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the"vacuum-assisted filtration and hot-pressing"method.Janus(BNNS/ANF)-(AgNWs/ANF)composite films exhibit"one side insulating,one side conducting"performance,the surface resistivity of the BNNS/ANF surface is 4.7×10^(13) Ω,while the conductivity of the AgNWs/ANF surface is 5,275 S/cm.And Janus(BNNS/ANF)-(AgNWs/ANF)composite film with thickness of 95 pm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K)and superior electromagnetic interference shielding effectiveness of 70 dB.The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa.It also has good temperature-voltage response characteristics(high Joule heating temperature at low supply voltage(5 V,215.0℃),fast response time(10 s)),excellent electrical stability and reliability(stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests).展开更多
This paper discusses composite materials based on inorganic salts for medium- and high-temperature thermal energy storage application. The composites consist of a phase change material (PCM), a ceramic material, and...This paper discusses composite materials based on inorganic salts for medium- and high-temperature thermal energy storage application. The composites consist of a phase change material (PCM), a ceramic material, and a high thermal conductivity material. The ceramic material forms a microstructural skeleton for encapsulation of the PCM and structural stability of the composites; the high thermal conductivity material enhances the overall thermal conductivity of the composites. Using a eutectic salt of lithium and sodium carbonates as the PCM, magnesium oxide as the ceramic skeleton, and either graphite flakes or carbon nanotubes as the thermal conductivity enhancer, we produced composites with good physical and chemical stability and high thermal conductivity. We found that the wettability of the molten salt on the ceramic and carbon materials significantly affects the microstructure of the composites.展开更多
基金National Natural Science Foundation of China(51773169 and 51973173)Guangdong Basic and Applied Basic Research Foundation(2019B1515120093)+2 种基金Technological Base Scientific Research ProjectsNatural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province(2019JC-11)Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)values of prepared thermally conductive polymer composites are still difficult to achieve expectations,which has become the bottleneck in the fields of thermally conductive polymer composites.Aimed at that,based on the accumulation of the previous research works by related researchers and our research group,this paper proposes three possible directions for breaking through the bottlenecks:(1)preparing and synthesizing intrinsically thermally conductive polymers,(2)reducing the interfacial thermal resistance in thermally conductive polymer composites,and(3)establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization.Also,the future development trends of the three above-mentioned directions are foreseen,hoping to provide certain basis and guidance for the preparation,researches and development of thermally conductive polymers and their composites.
基金Funded by the China Aerospace Science&Industry Corp
文摘SiCp/Cu composites with a compact microstructure were successfully fabricated by vacuum hot-pressing method. In order to suppress the detrimental interfacial reactions and ameliorate the interfacial bonding between copper and silicon carbide, molybdenum coating was deposited on the surface of silicon carbide by magnetron sputtering method and crystallized heat-treatment. The effects of the interfacial design on the thermo-physical properties of Si Cp/Cu composites were studied in detail. Thermal conductivity and expansion test results showed that silicon carbide particles coated with uniform and compact molybdenum coating have improved the comprehensive thermal properties of the Si Cp/Cu composites. Furthermore, the adhesion of the interface between silicon carbide and copper was significantly strengthened after molybdenum coating. Si Cp/Cu composites with a maximum thermal conductivity of 274.056 W/(m·K) and a coefficient of thermal expansion of 9 ppm/K were successfully prepared when the volume of silicon carbide was about 50%, and these Si Cp/Cu composites have potential applications for the electronic packageing of the high integration electronic devices.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52033011,51973237 and 52373095)Natural Science Foundation of Guangdong Province,China(Nos.2019B1515120038 and 2021A1515010417)+2 种基金Science and Technology Planning Project of Guangdong Province(No.2020B010179001)Science and Technology Planning Project of Guangzhou City(No.202201011568)GBRCE for Functional Molecular Engineering,and Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.23yxqntd002).
文摘To simultaneously endow thermal conductivity,high glass transition temperature(Tg)and healing capability to glass fiber/epoxy(GFREP)composite,dynamic crosslinked epoxy resin bearing reversibleβ-hydroxyl ester bonds was reinforced with boron nitride nanosheets modified glass fiber cloth(GFC@BNNSs).The in-plane heat conduction paths were constructed by electrostatic self-assembly of polyacrylic acid treated GFC and polyethyleneimine decorated BNNSs.Then,the GFC@BNNSs were impregnated with the mixture of lower concentration(3-glycidyloxypropyl)trimethoxysilane grafted BN micron sheets,3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate and hexahydro-4-methylphthalic anhydride,which accounted for establishing the through-plane heat transport pathways and avoiding serious deterioration of mechanical performances.The resultant GFREP composite containing less boron nitride particles(17.6 wt%)exhibited superior in-plane(3.29 W·m^(-1)·K^(-1))and through-plane(1.16 W·m^(-1)·K^(-1))thermal conductivities,as well as high Tg of 204℃(Tg of the unfilled epoxy=177℃).The reversible transesterification reaction enabled closure of interlaminar cracks within the composite,achieving decent healing efficiencies estimated by means of tensile strength(71.2%),electrical breakdown strength(83.6%)and thermal conductivity(69.1%).The present work overcame the disadvantages of conventional thermally conductive composites,and provided an efficient approach to prolong the life span of thermally conductive GFREP laminate for high-temperature resistant integrated circuit application.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10974183 and 11104252)the Doctoral Fund of the Ministry of Education of China(Grant No.20114101110003)+2 种基金the Fund for Science&Technology Innovation Team of Zhengzhou,China(Grant No.112PCXTD337)the Industrial Science and Technology Research Projects of Kaifeng,Henan Province,China(Grant No.1501049)the Key Research Projects of Henan Higher Education Institutions,China(Grant No.18A140014)
文摘Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger negative TEC is used to combine with Al to obtain a low thermal expansion composite with high conductivity. The TEC of Al is reduced by 19%for a ratio Al:Y2Mo3O12 of 0.3118. When the mass ratio of Al:Y2Mo3O12 increases to 2.0000, the conductivity of the composite increases so much that a transformation from capacitance to pure resistance appears. The results suggest that Y2Mo3O12 plays a dominant role in the composite for low content of Al(presenting isolate particles), while the content of Al increases enough to contact each other, the composite presents mainly the property of Al. For the effect of high content Al, it is considered that Al is squeezed out of the cermets during the uniaxial pressure process to form a thin layer on the surface.
文摘The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of different parts of the shell were observed by scanning electron microscopy and optical microscopy, and the thermophysical and mechanical properties of the shell were tested. The results show that there exists the segregation phenomenon between the Si C particulate and the liquid phase during thixoforming, the liquid phase flows from the shell, and the Si C particles accumulate at the bottom of the shell. The volume fraction of Si C decreases gradually from the bottom to the walls. Accordingly, the thermal conductivities of bottom center and walls are 178 and 164 W·m-1·K-1, the coefficients of thermal expansion(CTE) are 8.2×10-6 and 12.6×10-6 K-1, respectively. The flexural strength decreases slightly from 437 to 347 MPa. The microstructures and properties of the shell show gradient distribution.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51973173 and 51773169)Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(No.20191C-11)+1 种基金Funuaneilal Resealuh Funds fur te Centual Univel sities(No.310201911py010)and Fund Project of Basic and Applied Basic Research in Guangdong Province of China(No.2019B1515120093).
文摘Glass fibers(GFs)/epoxy laminated composites always present weak interlaminar shear strength(ILSS)and low cross-plane thermal conductivity coefficient(λ⊥).In this work,silica-sol,synthesized from tetraethyl orthosilicate(TEOS)and KH-560 via sol-gel method,was employed to functionalize the surface of GFs(Si-GFs).Together with a spherical boron nitride(BNN-30),the thermally conductive BNN-30/Si-GFs/epoxy laminated composites were then fabricated.Results demonstrate that Si-sol is beneficial to the improvement of mechanical properties for epoxy laminated composites(especially for ILSS).The BNN-30/Si-GFs/epoxy laminated composites with 15 wt%BNN-30 fillers display the optimal comprehensive properties.In-planeλ(λ//)andλ⊥reach the maximum of 2.37 and 1.07 W.m-1.K-1,146.9%and 132.6%higher than those of SiGFs/epoxy laminated composites(λ//=0.96 W.m-1.K-1 andλ⊥=0.46 W.m-1K-1),respectively,and also about 10.8 and 4.9 times those of pure epoxy resin(λ//=λ⊥,0.22 W.m-1.K-1).And the heat-resistance index(THRI),dielectric constant(ε),dielectric loss(tanδ),breakdown strength(E0),surface resistivity(ρs)as well as volume resistivity(ρv)are 197.3℃,4.95,0.0046,22.3 kV.mm-1,1.8×1014Ω,and 2.1×1014Ω.cm,respectively.
基金The authors are grateful for the financial support by Sichuan Science and Technology Program(2022YFH0090)the Fundamental Research Funds for the Central Universities.
文摘As the miniaturization of electronic devices and complication of electronic packaging,there are growing demands for thermal interfacial materials with enhanced thermal conductivity and the capability to direct the heat toward heat sink for highly efficient heat dissipation.Pitch-based carbon fiber(CF)with ultrahigh axial thermal conductivity and aspect ratios exhibits great potential for developing thermally conductive composites as TIMs.However,it is still hard to fabricate composites with aligned carbon fiber in a general approach to fully utilize its excellent axial thermal conductivity in specific direction.Here,three types of CF scaffolds with different oriented structure were developed via magnetic field-assisted Tetris-style stacking and carbonization process.By regulating the magnetic field direction and initial stacking density,the self-supporting CF scaffolds with horizontally aligned(HCS),diagonally aligned and vertically aligned(VCS)fibers were constructed.After embedding the polydimethylsiloxane(PDMS),the three composites exhibited unique heat transfer properties,and the HCS/PDMS and VCS/PDMS composites presented a high thermal conductivity of 42.18 and 45.01 W m^(−1)K^(−1)in fiber alignment direction,respectively,which were about 209 and 224 times higher than that of PDMS.The excellent thermal conductivity is mainly ascribed that the oriented CF scaffolds construct effective phonon transport pathway in the matrix.In addition,fishbone-shaped CF scaffold was also produced by multiple stacking and carbonization process,and the prepared composites exhibited a controlled heat transfer path,which can allow more versatility in the design of thermal management system.
基金supported by the Office of Naval Research under Award Number N000142312569。
文摘The carbides and nitrides of transition metals known as“MXenes”refer to a fast-growing family of two-dimensional materials discovered in 2011.Thanks to their unique nanolayer structure,superior electrical,mechanical,and thermal properties,MXenes have shown great potential in addressing the critical overheating issues that jeopardize the performance,stability,and lifetime of high-energy-density components in modern devices such as microprocessors,integrated circuits,and capacitors,etc.The outstanding intrinsic thermal conductivity of MXenes has been proved by experimental and theoretical research.Numerous MXenes-enabled high thermal conductivity composites incorporated with polymer matrix have also been reported and widely used as thermal management materials.Considering the booming heat dissipation demands,MXenes-enabled thermal management material is an extremely valuable and scalable option for modern electronics industries.However,the fundamental thermal transport mechanisms behind the MXenes family remain unclear.The MXene thermal conductivity disparities between the theoretical prediction and experimental results are still significant.To better understand the thermal conduction in MXenes and provide more insights for engineering high-performance MXene thermal management materials,in this article,we summarize recent progress on thermal conductive MXenes.The essential factors that affect MXenes intrinsic thermal conductivities are tackled,selected MXenes-polymer composites are highlighted,and prospects and challenges are also discussed.
基金supported by a National Research Foundation of Korea(NRF)grant,funded by the Korean government(MSIT)(NRF-2020M3H4A1A02084898 and NRF-2019M3C7A1032076)the Technology Innovation Program(20013794,Center for Composite Materials and Concurrent Design)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘The miniaturization and high integration of devices demand significant thermal management materials.Current technologies for the thermal management of electronics show some limitations in the case of multiple chip arrays.A device in multiple chip array is affected by heat from adjacent devices,along with thermal conductive composite.To address this problem,we present a nano composite of aligned boron nitride(BN)nanosheet islands with porous polydimethylsiloxane(PDMS)foam to have mechanical stability and non-thermal interference.The islands of tetrahedrally-structured BN in the composite have a high thermal conductivity of 1.219 W·m^(-1)·K^(-1) in the through-plane direction(11.234W·m^(-1)·K^(-1)in the in-plane direction)with 16 wt.%loading of BN.On the other hand,porous PDMS foam has a low thermal conductivity of 0.0328W·m^(-1)·K^(-1) in the through-plane direction at 70%porosity.Heat pathways are then formed only in the structured BN islands of the composite.The porous PDMS foam can be applied as a thermal barrier between structured BN islands to inhibit thermal interference in multiple device arrays.Furthermore,this composite can maintain selective thermal dissipation performance with 70%tensile strain.Another beauty of the work is that it could have guided heat dissipation by assembling of multiple layers which have high vertical thermal conductive islands,while inhibiting thermal interference.The selective heat dissipating composite can be applied as a heatsink for multiple chip arrays electronics.
基金financially supported by the National Natural Science Foundation of China (No.51274040)the Fundamental Research Funds for the Central Universities (No.FRF-TP-10-003B)
文摘This study was pertained to the effects of Ti coating on diamond surfaces and Si addition into Al matrix on the thermal conductivity(TC) and the coefficient of thermal expansion(CTE) of diamond/Al composites by pressure infiltration.The fracture surfaces,interface microstructures by metal electro-etching and interfacial thermal conductance of the composites prepared by two methods were compared.The results reveal that Ti coating on diamond surfaces and only12.2 wt% Si addition into Al matrix could both improve the interfacial bonding and increase the TCs of the composites.But the Ti coating layer introduces more interfacial thermal barrier at the diamond/Al interface compared to adding 12.2 wt% Si into Al matrix.The diamond/Al composite with 12.2 wt% Si addition exhibits maximum TC of 534 W·m^-1·K^-1and a very low CTE of 8.9×10^-6K^-1,while the coating Ti-diamond/Al composite has a TC of 514 W·m^-1·K^-1 and a CTE of 11.0×10^-6K^-1.
基金supported by the Research Fund of the State Key Laboratory of Solidification Processing (NWPU) of China (No. 105QP-2014)the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2015JM5247)
文摘Influence of cryogenic thermal cycling treatment (from -120 ℃ to 120 ℃ at 1.3 × 10^-3 Pa) on the thermo- physical properties including thermal conductivity (TC), thermal diffusivity (TD), specific heat (SH) and coefficient of thermal expansion (CTE) ranging from room temperature to 1900 ℃ of carbon/carbon (C/C) composites in x-y and z directions were studied. Test results showed that fiber/matrix interracial debonding, fiber pull-out and microcracks occurred after the cryogenic thermal treatment and they increased significantly with the cycle number increasing, while cycled more than 30 times, the space ofmicrodefects reduced obviously due to the accumulation of cyclic thermal stress. TC, TD, SH and CTE of the cryogenic thermal cycling treated C/C composites were first decreased and then increased in both directions (x-y and z directions) with the increase of thermal cycles. A model regarding the heat conduction in cryogenic thermal cycling treated C/C composites was proposed.
基金The authors are grateful for the support and funding from the Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120093)Foundation of National Natural Science Foundation of China(Nos.U21A2093 and 51973173)Technological Base Scientific Research Projects(Highly Thermal conductivity Nonmetal Materials).
文摘Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial intelligence and wearable electronics.In this work,silver nanowires(AgNWs)are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent,and boron nitride(BN)is performed to prepare BN nanosheets(BNNS)with the help of isopropyl alcohol and ultrasonication-assisted peeling method,which are compounded with aramid nanofibers(ANF)prepared by chemical dissociation,respectively,and the(BNNS/ANF)-(AgNWs/ANF)thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the"vacuum-assisted filtration and hot-pressing"method.Janus(BNNS/ANF)-(AgNWs/ANF)composite films exhibit"one side insulating,one side conducting"performance,the surface resistivity of the BNNS/ANF surface is 4.7×10^(13) Ω,while the conductivity of the AgNWs/ANF surface is 5,275 S/cm.And Janus(BNNS/ANF)-(AgNWs/ANF)composite film with thickness of 95 pm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K)and superior electromagnetic interference shielding effectiveness of 70 dB.The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa.It also has good temperature-voltage response characteristics(high Joule heating temperature at low supply voltage(5 V,215.0℃),fast response time(10 s)),excellent electrical stability and reliability(stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests).
基金supported by the Focused Deployment Project of the Chinese Academy of Sciences(KGZD-EW-302-1)Key Technologies R&D Program of China(No.2012BAA03B03)+1 种基金Natural Science Foundation of China(Grant No.21106151)the UK Engineering and Physical Sciences Research Council(EPSRC)under grant EP/K002252/1
文摘This paper discusses composite materials based on inorganic salts for medium- and high-temperature thermal energy storage application. The composites consist of a phase change material (PCM), a ceramic material, and a high thermal conductivity material. The ceramic material forms a microstructural skeleton for encapsulation of the PCM and structural stability of the composites; the high thermal conductivity material enhances the overall thermal conductivity of the composites. Using a eutectic salt of lithium and sodium carbonates as the PCM, magnesium oxide as the ceramic skeleton, and either graphite flakes or carbon nanotubes as the thermal conductivity enhancer, we produced composites with good physical and chemical stability and high thermal conductivity. We found that the wettability of the molten salt on the ceramic and carbon materials significantly affects the microstructure of the composites.
基金supported by the National Natural Science Foundation of China(51973173)the Technological Base Scientific Research Projects(Highly Thermal conductivity Nonmetal Materials)+2 种基金the Fundamental Research Funds for the Central Universitiesthe Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2022073)financially supported by the Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars。