The structure of In-1 %Cu and In-5%Cu (mass fraction) alloy melts werestudied at different temperatures above liquidus by using a high-temperature X-ray diffractometerand were compared with that of pure In melt. Exper...The structure of In-1 %Cu and In-5%Cu (mass fraction) alloy melts werestudied at different temperatures above liquidus by using a high-temperature X-ray diffractometerand were compared with that of pure In melt. Experimental results show that with the addition of 1%Cu or 5% Cu, the thermal contraction phenomenon of atom clusters occurs in melts with thetemperature increasing like pure In melt. With the addition of 1% Cu, the thermal contraction ofatom clusters increases and the contraction is not homogeneous in the whole measurement temperaturerange. The sudden change and noticeable contraction can be found in the range of 280-390 ℃. Thetemperature range of the sudden change is lower than that of pure In melt. With the addition of 5%Cu, the thermal contraction of atom clusters decreases and the contraction is not consistent in thewhole measurement temperature range. The anomalous change can be measured at about 600 ℃. At thesame superheating temperature, the nearest interatomic distance r_1 of the melts containing copperis smaller than that of pure In melt, implying that the cluster structure of melts containing copperis more compact.展开更多
This paper presents how the contractions of the main components of a V6 motor with low engine displacement are determined for the cold-start phase under extreme low temperature. Internal combustion engine components h...This paper presents how the contractions of the main components of a V6 motor with low engine displacement are determined for the cold-start phase under extreme low temperature. Internal combustion engine components have complex geometries and to obtain the thermal contractions, in the research, used the method of finite element analysis. The phenomena of thermal contractions are studied for the cold-start situations at extreme low temperature, knowing that the cold-start phase of an internal combustion engine is the main factor that determines moving rotational and translational parts wear life. Checking the proper choice of clearance is particularly important, as the use of inappropriate values of it leads to rapid operation destruction of the engine group components. The results obtained for the thermal clearances of crankshaft bearings are mathematically modeled and the relations can be used for calculating the clearances. The mathematical models are also useful for implementing in different software tools.展开更多
Density functional theory combined with the Gr¨uneisen approximation is used to calculate the thermal properties of single-walled boron nanotubes(BNTs).The specific heat and thermal expansion are investigated.The...Density functional theory combined with the Gr¨uneisen approximation is used to calculate the thermal properties of single-walled boron nanotubes(BNTs).The specific heat and thermal expansion are investigated.The thermal expansion coeffi-cient of the BNT is found to be significantly correlated with tube size and chirality.A remarkable thermal contraction is found at small tube diameters.These results indicate that BNTs would have potential applications in sensors,actuators,and memory materials.展开更多
A series of title compounds as well as their precursors were synthesized by precursor route. Their PXRD patterns were characterized with ZrW2O8 or ZrMo2O8 model by Rietveld method. The thermal contractions of the comp...A series of title compounds as well as their precursors were synthesized by precursor route. Their PXRD patterns were characterized with ZrW2O8 or ZrMo2O8 model by Rietveld method. The thermal contractions of the compounds were determined according to the variable-temperature PXRD data and NTE coefficients were presented. The two-phase mixture of ZrW0.4Mo1.6O8 was also analyzed individually.展开更多
On November 8, 1996. the import contract signing ceremony on the two 660 MW coal-fired generating units of Hanfeng Thermal Power Plant 1st phase was held in the Great Hall of People, Beijing.
Wedge-like structures filled with silty sand penetrate Quaternary fluvial and aeolian sediments and, in places, Tertiary bedrock on the Ordos Plateau, North China. The wedges reflect thermal contraction cracking of ei...Wedge-like structures filled with silty sand penetrate Quaternary fluvial and aeolian sediments and, in places, Tertiary bedrock on the Ordos Plateau, North China. The wedges reflect thermal contraction cracking of either permafrost or seasonal frost during the Late Pleistocene and early Holocene. Wedges of about 1 m in depth form polygonal nets of 2-3 m in diameter(type B). They contrast with wedges of 3-4 m in depth that form polygons of 10-15 m in diameter(type A).This review focuses upon the highly variable size of the inferred polygon nets and discusses the problem of differentiating between seasonally and perennially frozen ground, or between seasonal frost and permafrost.展开更多
Negative thermal expansion(NTE)of materials is an intriguing phenomenon challenging the concept of traditional lattice dynamics and of importance for a variety of applications.Progresses in this field develop markedly...Negative thermal expansion(NTE)of materials is an intriguing phenomenon challenging the concept of traditional lattice dynamics and of importance for a variety of applications.Progresses in this field develop markedly and update continuously our knowledge on the NTE behavior of materials.In this article,we review the most recent understandings on the underlying mechanisms(anharmonic phonon vibration,magnetovolume effect,ferroelectrorestriction and charge transfer)of thermal shrinkage and the development of NTE materials under each mechanism from both the theoretical and experimental aspects.Besides the low frequency optical phonons which are usually accepted as the origins of NTE in framework structures,NTE driven by acoustic phonons and the interplay between anisotropic elasticity and phonons are stressed.Based on the data documented,some problems affecting applications of NTE materials are discussed and strategies for discovering and design novel framework structured NET materials are also presented.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No. 50231040)the Natural Science Foundation of Shandong Province, China (No. Z2001F02)
文摘The structure of In-1 %Cu and In-5%Cu (mass fraction) alloy melts werestudied at different temperatures above liquidus by using a high-temperature X-ray diffractometerand were compared with that of pure In melt. Experimental results show that with the addition of 1%Cu or 5% Cu, the thermal contraction phenomenon of atom clusters occurs in melts with thetemperature increasing like pure In melt. With the addition of 1% Cu, the thermal contraction ofatom clusters increases and the contraction is not homogeneous in the whole measurement temperaturerange. The sudden change and noticeable contraction can be found in the range of 280-390 ℃. Thetemperature range of the sudden change is lower than that of pure In melt. With the addition of 5%Cu, the thermal contraction of atom clusters decreases and the contraction is not consistent in thewhole measurement temperature range. The anomalous change can be measured at about 600 ℃. At thesame superheating temperature, the nearest interatomic distance r_1 of the melts containing copperis smaller than that of pure In melt, implying that the cluster structure of melts containing copperis more compact.
基金funds project PRO-DD (POS-CCE, O.2.2.1., ID 123, SMIS 2637, ctr. No 11/2009) for providing the infrastructure used in this work
文摘This paper presents how the contractions of the main components of a V6 motor with low engine displacement are determined for the cold-start phase under extreme low temperature. Internal combustion engine components have complex geometries and to obtain the thermal contractions, in the research, used the method of finite element analysis. The phenomena of thermal contractions are studied for the cold-start situations at extreme low temperature, knowing that the cold-start phase of an internal combustion engine is the main factor that determines moving rotational and translational parts wear life. Checking the proper choice of clearance is particularly important, as the use of inappropriate values of it leads to rapid operation destruction of the engine group components. The results obtained for the thermal clearances of crankshaft bearings are mathematically modeled and the relations can be used for calculating the clearances. The mathematical models are also useful for implementing in different software tools.
基金the National Basic Research Program of China(973 Program Grant No.2012CB215405)the National Natural Science Foundation of China(Grant No.11374272)City University of Hong Kong(Project No.7008092).
文摘Density functional theory combined with the Gr¨uneisen approximation is used to calculate the thermal properties of single-walled boron nanotubes(BNTs).The specific heat and thermal expansion are investigated.The thermal expansion coeffi-cient of the BNT is found to be significantly correlated with tube size and chirality.A remarkable thermal contraction is found at small tube diameters.These results indicate that BNTs would have potential applications in sensors,actuators,and memory materials.
基金Project (No. 29871006) supported by the National Natural Science Foundation of China.
文摘A series of title compounds as well as their precursors were synthesized by precursor route. Their PXRD patterns were characterized with ZrW2O8 or ZrMo2O8 model by Rietveld method. The thermal contractions of the compounds were determined according to the variable-temperature PXRD data and NTE coefficients were presented. The two-phase mixture of ZrW0.4Mo1.6O8 was also analyzed individually.
文摘On November 8, 1996. the import contract signing ceremony on the two 660 MW coal-fired generating units of Hanfeng Thermal Power Plant 1st phase was held in the Great Hall of People, Beijing.
基金part of a project investigating the nature and extent of paleo-permafrost in West China led by Professor Huijun Jin with the State Key Laboratory of Frozen Soils Engineering (SKLFSE), Northwest Institute of Eco-Environment and Resources (NIEER), Chinese Academy of Sciences (CAS), Lanzhou, under the auspices of National Natural Science Foundation of China (NSFC) (Grant No.41811530093)Russian Federation Bureau of Research (RFBR Grant No.18-5553054) on Formation, modern state of Pleistocene cryogenic deposits in Eastern Asia, and forecast of their dynamics in relation to the ongoing climatic variations+1 种基金Key Programs of the International Cooperation Department of the Chinese Academy of Sciences (CAS) on "Changing permafrost in China, Russia and Mongolia and its impacts on key engineered infrastructures"CAS Strategic Pilot Science and Technology Project (Grant No.XDA05120302) "Permafrost in China during the Holocene Megathermal Period and Last Glaciation Maximum"。
文摘Wedge-like structures filled with silty sand penetrate Quaternary fluvial and aeolian sediments and, in places, Tertiary bedrock on the Ordos Plateau, North China. The wedges reflect thermal contraction cracking of either permafrost or seasonal frost during the Late Pleistocene and early Holocene. Wedges of about 1 m in depth form polygonal nets of 2-3 m in diameter(type B). They contrast with wedges of 3-4 m in depth that form polygons of 10-15 m in diameter(type A).This review focuses upon the highly variable size of the inferred polygon nets and discusses the problem of differentiating between seasonally and perennially frozen ground, or between seasonal frost and permafrost.
基金This work was supported by the National Natural Science Foundation of China(Nos.11874328,11774078,and 21905252)China Postdoctoral Science Foundation(No.2019M652558).
文摘Negative thermal expansion(NTE)of materials is an intriguing phenomenon challenging the concept of traditional lattice dynamics and of importance for a variety of applications.Progresses in this field develop markedly and update continuously our knowledge on the NTE behavior of materials.In this article,we review the most recent understandings on the underlying mechanisms(anharmonic phonon vibration,magnetovolume effect,ferroelectrorestriction and charge transfer)of thermal shrinkage and the development of NTE materials under each mechanism from both the theoretical and experimental aspects.Besides the low frequency optical phonons which are usually accepted as the origins of NTE in framework structures,NTE driven by acoustic phonons and the interplay between anisotropic elasticity and phonons are stressed.Based on the data documented,some problems affecting applications of NTE materials are discussed and strategies for discovering and design novel framework structured NET materials are also presented.