期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Improving thermal efficiency and stability of laser welding process for magnesium alloy by combining power modulation and subatmospheric pressure environment
1
作者 Jie Ning Suck-Joo Na +3 位作者 Lin-Jie Zhang Xiang Wang Jian Long Won-Ik Cho 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第10期2788-2800,共13页
The laser welding(LW)process of highly reflective materials presents low thermal efficiency and poor stability.To solve the problem,the effects of subatmospheric environment on LW process,technological parameters in s... The laser welding(LW)process of highly reflective materials presents low thermal efficiency and poor stability.To solve the problem,the effects of subatmospheric environment on LW process,technological parameters in subatmospheric environment on weld formation and welding with sinusoidal modulation of laser power on the stability of LW process in subatmospheric environment were explored.The AZ31magnesium(Mg)alloy was used as the test materials.The test result revealed that the weld penetration in subatmospheric environment can increase by more than ten times compared with that under normal pressure.After the keyhole depth greatly rises,significantly periodic local bulge is observed on the backwall surface of the keyhole and the position of the bulge shifts along the direction of the keyhole depth.Eventually,the hump-shaped surface morphology of the welded seam is formed;moreover,the weld width in local zones in the lower part of the welded seam remarkably grows.During LW in subatmospheric environment,the weld penetration can be further greatly increased through power modulation.Besides,power modulation can inhibit the occurrence of bulges in local zones on the backwall of the keyhole during LW in subatmospheric environment,thus further curbing the significant growth of the weld widths of hump-shaped welding beads and local zones in the lower part of welded seams.Finally,the mechanism of synchronously improving the thermal efficiency and stability of LW process of highly reflective materials through power modulation in subatmospheric environment was illustrated.This was conducted according to theoretical analysis of recoil pressure and observation results of dynamic behaviors of laser induced plasma clouds and keyholes in the molten pool through high speed photography. 展开更多
关键词 Laser welding Subatmospheric environment Power modulation Highly reflective materials thermal efficiency STABILITY
下载PDF
Characteristics and Thermal Efficiency of a Non-transferred DC Plasma Spraying Torch Under Low Pressure
2
作者 鲍世聪 郭文康 +2 位作者 叶民友 须平 张晓东 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第6期701-705,共5页
Current-voltage (I-V) characteristics of a non-transferred DC arc plasma spray torch operated in argon at vacuum are reported. The arc voltage is of negative characteristics for a current below 200 A, fiat for a cur... Current-voltage (I-V) characteristics of a non-transferred DC arc plasma spray torch operated in argon at vacuum are reported. The arc voltage is of negative characteristics for a current below 200 A, fiat for a current between 200 A to 250 A and positive for a current beyond 250 A. The voltage increases slowly with the increase in carrier gas of arc. The rate of change in voltage with currents is about 3-4 V/100 A at a gas flow rate of about 1-1.5 V/10 standard liter per minute (slpm). The I-V characteristics of the DC plasma torch are of a shape of hyperbola. Arc power increases with the argon flow rate. and the thermal efficiency of the torch acts in a similar way. The thermal efficiency of the non-transferred DC plasmatron is about 65-78%. 展开更多
关键词 I-V characteristics thermal efficiency DC plasmatron VACUUM
下载PDF
Effect of Non-Convective Zone Thickness on Thermal Efficiency of Salt Gradient Solar Ponds
3
作者 Nan Li Ruiyang Xu +1 位作者 Caihong Zhang Guoping Wu 《Energy Engineering》 EI 2021年第4期1185-1195,共11页
An improved radiation transmission and thermal efficiency model for solar ponds has been proposed based on both the Hull Model and Wang/Seyed-Yagoobi Model in this paper.The new model is more accurate to actual measur... An improved radiation transmission and thermal efficiency model for solar ponds has been proposed based on both the Hull Model and Wang/Seyed-Yagoobi Model in this paper.The new model is more accurate to actual measured conditions because multiple reflections and turbidity effects are included.Absorption penetration,thermal conductivity loss and thermal efficiency under different Non-Convective Zone thicknesses are numerically analyzed and thoroughly discussed.The results show thatΔT/I0 plays a critical role for the thermal efficiency of solar pond.Furthermore,it is found through calculation that there is an optimum thickness of the Non-Convective Zone.When the Non-Convective Zone thickness is less than this critical threshold,both temperature and thermal efficiency are decreased with increasing turbidity.However,when the Non-Convective Zone thickness is greater than this critical threshold,the increasing turbidity within a certain range will be beneficial to improve the thermal efficiency of solar pond.In addition,optimum Non-Convective Zone thickness is also related to the temperature,turbidity,salinity variation and bottom reflectivity. 展开更多
关键词 Solar pond Non-Convective Zone thickness thermal efficiency bottom reflective
下载PDF
Effects of R134a Saturation Temperature on a Shell and Tube Condenser with the Nanofluid Flow in the Tube Using the Thermal Efficiency and Effectiveness Concepts
4
作者 Élcio Nogueira 《World Journal of Nano Science and Engineering》 2021年第1期1-24,共24页
The work’s objective is to analyze the influence of the saturation temperature of the R134a refrigerant on the thermal performance of a shell and tube type condenser, with water and aluminum oxide (Al<sub>2<... The work’s objective is to analyze the influence of the saturation temperature of the R134a refrigerant on the thermal performance of a shell and tube type condenser, with water and aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) nanoparticles flowing into the tube. For analysis, the heat exchanger is subdivided into three regions: subcooled liquid, saturated steam, and superheated steam. The shell and tube heat exchanger assumed as the basis for the study has 36 tubes, with rows of 4 tubes in line and three passes into the tube in each region. The parameters used to analyze the performance are efficiency and effectiveness, through variations of quantities such as saturation temperature, the nanofluid’s mass flow rate, fraction in the nanoparticles’ volume, and the number of passes in the tube in each region of the heat exchanger. The obtained results demonstrate that the efficiency is relatively high in all the analyzed situations. In each saturation temperature, the effectiveness can be increased by introducing fractions of nanoparticles in the water or increasing the number of passes in the tube. 展开更多
关键词 Shell and Tube Condenser R134A NANOFLUID thermal efficiency thermal Effectiveness
下载PDF
Adverse Effects of Condenser Cooling Seawater Temperature,Fouling,and Salinity on the Output Power and Thermal Efficiency of BWR NNPs
5
作者 Said M.A.Ibrahim Ismail M.A.Aggour 《Journal of Mechanical Materials and Mechanics Research》 2022年第1期21-39,共19页
Increasing the thermal efficiency in newly designed power stations is a priority.Keeping the efficiency in existed plants close to the rated one is of paramount importance.This research contributes to investigating th... Increasing the thermal efficiency in newly designed power stations is a priority.Keeping the efficiency in existed plants close to the rated one is of paramount importance.This research contributes to investigating the adverse effects of changes in condenser seawater coolant characteristics,(temperature,fouling,and salinity),on the thermal performance of a Boiling Water Reactor Nuclear Power Plant(BWR)NPP.A mathematical model is developed to relate seawater cooling temperature,fouling,and salinity to output power and thermal efficiency.The model also explains the impact of the condenser performance on power and efficiency.The thermal efficiency of the considered BWR NPP is reduced by 2.26%for a combined extreme increases in the condenser cooling seawater temperature,fouling factor of seawater and treated boiler feed water,and salinity by 10°C,0.0002,0.00001 m2K/W,and 100 g/kg,respectively.A rise in the condenser efficiency from 40%-100%results in an increase in the output power by 7.049%,and the thermal efficiency increases by about 2.62%.Conclusions are useful for reactor’s design. 展开更多
关键词 BWR NPP thermal efficiency Temperature FOULING SALINITY
下载PDF
Comprehensive Examination of Solar Panel Design: A Focus on Thermal Dynamics
6
作者 Kajal Sheth Dhvanil Patel 《Smart Grid and Renewable Energy》 2024年第1期15-33,共19页
In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is con... In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance. 展开更多
关键词 Solar Photovoltaic (PV) Modules thermal efficiency Analysis Open Circuit Voltage Computational Fluid Dynamics (CFD) Solar Panel Temperature Profile
下载PDF
Efficiency and Effectiveness Thermal Analysis of the Shell and Helical Coil Tube Heat Exchanger Used in an Aqueous Solution of Ammonium Nitrate Solubility (<i>ANSOL</i>) with 20% H<sub>2</sub>O and 80% <i>AN</i> 被引量:1
7
作者 Élcio Nogueira 《Journal of Materials Science and Chemical Engineering》 2021年第6期24-45,共22页
The case study is about obtaining the flow rate and saturation temperature of steam that makes it possible to heat a solution of water and ammonia nitrate (<i>ANSOL</i>) in a shell and helical coil tube he... The case study is about obtaining the flow rate and saturation temperature of steam that makes it possible to heat a solution of water and ammonia nitrate (<i>ANSOL</i>) in a shell and helical coil tube heat exchanger, within a time interval, without that the crystallization of the <i>ANSOL</i> solution occurs. The desired production per batch of the solution is 5750 kg in 80 minutes. The analysis uses the concepts of efficiency and effectiveness to determine the heat transfer rate and temperature profiles that satisfy the imposed condition within a certain degree of safety and with the lowest possible cost in steam generation. Intermediate quantities necessary to reach the objective are the Reynolds number, Nusselt number, and global heat transfer coefficient for the shell and helical coil tube heat exchanger. Initially, the water is heated for a specified period and, subsequently, the ammonium nitrate is added to a given flow in a fixed mass flow rate. 展开更多
关键词 thermal efficiency thermal Effectiveness Shell and Helical Coil Tube Heat Exchanger Ammonium Nitrate
下载PDF
Theoretical and experimental research on effect of fins attachment on operating parameters and thermal efficiency of solar air collector
8
作者 Ali Daliran Yahya Ajabshirchi 《Information Processing in Agriculture》 EI 2018年第4期411-421,共11页
Flat plate air collector is a type of heat exchanger which absorbs radiated solar energy and exchanges it to heat.According to low efficiency of this type of collectors,a suitable approach is investigated in this pape... Flat plate air collector is a type of heat exchanger which absorbs radiated solar energy and exchanges it to heat.According to low efficiency of this type of collectors,a suitable approach is investigated in this paper so as to increase thermal performance of the system.Thermal efficiency of solar collector for two models C1(without fins)and C2(with fins)both of 1 m^2 surface area with forced convection flow is studied theoretically and experimentally.Rectangular fins are attached over back board in air channel to create turbulence in air flow.In order to measure air temperature,17 thermal sensors(LM35)are exploited,among which 11 were mounted on absorber plate and the remaining 6 on the back board.Physical design of experimental model are performed in Solidwork and programming of theoretical work in Matlab software.In this research,a fan with constant mass flow rate of 0.033 kg/s is utilized for producing air flow.Results indicate that applying fins in air channel not only reduces Nusselt number from 19.67 to 16.23,but also due to decreasing hydraulic diameter and creating air flow turbulence,causes increase of heat transfer coefficient from absorber plate to air flow and consequently reduction of total heat loss and higher outlet air temperatures.Average difference of outlet air temperature between experimental and theoretical results for both collectors(C1 and C2)was recorded respectively as 7.6% and 9.4%.Thermal efficiency was respectively calculated 30% and 51% for experimental types with and without fins and 33% and 55% for those of theoretical work which generally seem reasonable. 展开更多
关键词 Solar air collector FINS thermal efficiency Energy efficiency Renewable energy
原文传递
Localized Theoretical Analysis of Thermal Performance of Individually Finned Heat Pipe Heat Exchanger for Air Conditioning with Freon R404A as Working Fluid
9
作者 Élcio Nogueira 《Journal of Materials Science and Chemical Engineering》 2023年第8期61-85,共17页
This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat... This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes. 展开更多
关键词 Individually Finned Heat Pipe Heat Exchanger thermal efficiency thermal Effectiveness Air Conditioning Freon R404A
下载PDF
Localized Theoretical Analysis of Thermal Performance of Individually Finned Heat Pipe Heat Exchanger for Air Conditioning with Freon R404A as Working Fluid
10
作者 Élcio Nogueira 《Journal of Modern Physics》 2023年第8期61-85,共6页
This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat... This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes. 展开更多
关键词 Individually Finned Heat Pipe Heat Exchanger thermal efficiency thermal Effectiveness Air Conditioning Freon R404A
下载PDF
High Efficiency and Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter
11
作者 吕孝鹏 王会 +7 位作者 孟令强 魏晓芳 陈永振 孔祥彬 刘建君 唐建新 汪鹏飞 王鹰 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第8期139-142,共4页
High efficiency, stable organic light-emitting diodes (OLEDs) based on 2-pheyl-4'-carbazole-9-H-Thioxanthen-9- one-10, 10-dioxide (TXO-PhCz) with different doping concentration are constructed. The stability of t... High efficiency, stable organic light-emitting diodes (OLEDs) based on 2-pheyl-4'-carbazole-9-H-Thioxanthen-9- one-10, 10-dioxide (TXO-PhCz) with different doping concentration are constructed. The stability of the encap- sulated devices are investigated in detail. The devices with the 10 wt% doped TXO-PhCz emitter layer (EML) show the best performance with a current efficiency of 52.1 cd/A, a power efficiency of 32.71re^W, and an external quantum efficiency (EQE) of 17.7%. The devices based on the lOwt%-doped TXO-PhCz EML show the best operational stability with a half-life time (LTSO) of 8Oh, which is 8 h longer than that of the reference devices based on fac-tris(2-phenylpyridinato)iridium( Ⅲ) (Ir(ppy)a). These indicate excellent stability of TXO-PhCz for redox and oxidation processes under electrical excitation and TXO-PhCz can be potentially used as the emitters for OLEDs with high efficiency and excellent stability. The high-performance device based on TXO-PhCz with high stability can be further improved by the optimization of the encapsulation technology and the development of a new host for TXO-PhCz. 展开更多
关键词 OLEDs in of High efficiency and Stable Organic Light-Emitting Diodes Based on thermally Activated Delayed Fluorescence Emitter EML on for
下载PDF
Effects of 946-nm thermal shift and broadening on Nd^(3+):YAG laser performance 被引量:2
12
作者 Seyed Ebrahim Pourmand Ghasem Rezaei 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期342-345,共4页
Spectroscopic properties of flashlamp pumped Nd^3+:YAG laser are studied as a function of temperature in a range from-30℃ to 60℃. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission wit... Spectroscopic properties of flashlamp pumped Nd^3+:YAG laser are studied as a function of temperature in a range from-30℃ to 60℃. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission within the respective intermanifold transitions of ^4F3/2→^4I9/2are investigated. The 946.0-nm line shifts toward the shorter wavelength and broadens. In addition, the threshold power and slope efficiency of the 946.0-nm laser line are quantified with temperature.The lower the temperature, the lower the threshold power is and the higher the slope efficiency of the 946.0-nm laser line is,thus the higher the laser output is. This phenomenon is attributed to the ion-phonon interaction and the thermal population in the ground state. 展开更多
关键词 946-nm Nd:YAG laser thermal broadening thermal shift flashlamp pump slope efficiency threshold power
下载PDF
Evaluation of Shell and Tube Heat Exchanger Performance by Using ZnO/Water Nanofluids
13
作者 Hussein Hayder Mohammed Ali Adnan M Hussein +1 位作者 Kadum Mohammed Hussain Allami Barhm Mohamad 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第6期62-69,共8页
To examine and investigate the impact of nanofluid on heat exchanger performance,including the total heat transfer,the effect of friction factor,the average Nusselt number,and the thermal efficiency,the output heat tr... To examine and investigate the impact of nanofluid on heat exchanger performance,including the total heat transfer,the effect of friction factor,the average Nusselt number,and the thermal efficiency,the output heat transfers of a shell and tube heat exchanger using ZnO nanoparticles suspended in water has been conducted numerically.The governing equations were solved using finite volume techniques and CFD simulations with ANSYS/FLUENT Solver 2021.The nanoparticles volume fractions adopted are 0.2%and 0.35%that used in numerical computations under 200 to 1400 Reynolds numbers range.The increasing of temperature is approximately 13%from the bottom to the top of heat exchanger,while the maximum enhancement of Nusselt number is about 10%,19%for volume fractions 0.2%and 0.35%respectively.The elevated values of the friction factor at the volumetric ratios of 0.2%and 0.35%are 0.25%and 0.47%respectively.The findings demonstrate that the performance efficiency of shell and tube heat exchanger is enhanced due to the increase in Nusselt number. 展开更多
关键词 CFD Reynold number thermal efficiency Nusselt number NANOFLUID heat exchanger
下载PDF
Characteristics and Temperature Measurement of a Non-Transferred Cascaded DC Plasma Torch 被引量:3
14
作者 B.BORA N.AOMOA M.KAKATI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第2期181-187,共7页
Dependence of the current-voltage characteristics of a non-transferred DC cascaded plasma torch used for nanoparticle synthesis, on the plasma current and the plasma argon gas flow rate are reported in this paper. The... Dependence of the current-voltage characteristics of a non-transferred DC cascaded plasma torch used for nanoparticle synthesis, on the plasma current and the plasma argon gas flow rate are reported in this paper. The potential structure inside the torch and its dependence on the plasma current and gas flow rate are also investigated. The arc voltage is seen to exhibit negative characteristic for a current below 150 A and positive characteristic above that current value. The voltage drop near the electrodes is found to decrease with the increase in plasma current. 25~ of the total voltage is dropped near the cathode at a plasma current of 50 A and a argon plasma gas flow rate of 10 liter per minute (LPM), and it decreases to 12% with the current increasing to 300 A, and to 17% with a gas flow rate of 25 LPM. The variation in the torch efficiency with the gas flow rate and plasma current is also reported. The efficiency of the torch is found to be between 36% and 48%. In addition, the plasma gas temperature at various positions of the reactor and for different currents and voltages are measured by calorimetric estimation with a heat balance technique. 展开更多
关键词 DC plasma torch current voltage characteristics thermal efficiency temper- ature measurements
下载PDF
Influence of the Laminar Plasma Torch Construction on the Jet Characteristics 被引量:2
15
作者 曹修全 余德平 +2 位作者 向勇 姚进 苗建国 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第7期740-743,共4页
Based on two typical laminar plasma torches (LPT), i.e. a multi-electrode plasma torch (MEPT) with segmented anode structure and a two-electrode plasma torch (TEPT) with conventional structure, this paper studie... Based on two typical laminar plasma torches (LPT), i.e. a multi-electrode plasma torch (MEPT) with segmented anode structure and a two-electrode plasma torch (TEPT) with conventional structure, this paper studied the influence of the LPTs construction on the jet characteristics. Experiments were designed to measure their arc voltage, jet length, thermal efficiency and specific enthalpy using a home-made data acquisition system. With them, the jet characteristics of the two different LPTs were compared in detail. Results show that different plasma torch construction leads to distinctively different characteristics of the generated plasma jet. Based on the different jet characteristics, a plasma torch with appropriate construction could be used to meet the different application requirements. 展开更多
关键词 laminar plasma torch jet characteristics thermal efficiency specific enthalpy
下载PDF
NO_x emission characteristics of hydrogen internal combustion engine 被引量:1
16
作者 孙柏刚 段俊法 刘福水 《Journal of Beijing Institute of Technology》 EI CAS 2014年第3期332-338,共7页
To study the economic advantages of hydrogen internal combustion engine, an experimen- tal study was carried out using a 2.0 L port fuel-injected (PFI) hydrogen internal combustion engine. Influences of fuel-air equ... To study the economic advantages of hydrogen internal combustion engine, an experimen- tal study was carried out using a 2.0 L port fuel-injected (PFI) hydrogen internal combustion engine. Influences of fuel-air equivalence ratio φ, speed, and ignition advance angle on heat efficiency were determined. Test results showed that indicated thermal efficiency ( ITE ) firstly increased with fuel- air equivalence ratio, achieved the maximum value of 40. 4% ( φ = 0.3 ), and then decreased when was more than 0. 3. ITE increased as speed rises. Mechanical efficiency increased as fuel-air equiva- lence ratio increased, whereas mechanical efficiency decreased as speed increased, with maximum mechanical efficiency reaching 90%. Brake thermal efficiency (BTE) was influenced by ITE and me- chanical efficiency, at the maximum value of 35% (φ =0.5, 2 000 r/min). The optimal ignition ad- vance angle of each condition resulting in the maximum BTE was also studied. With increasing fuel- air equivalence ratio, the optimal ignition angle became closer to the top dead center ( TDC ). The test results and the conclusions exhibited a guiding role on hydrogen internal combustion engine opti- mization. 展开更多
关键词 hydrogen internal combustion engine thermal efficiency fuel-air equivalence ratio SPEED ignition advance angle
下载PDF
Towards Optimizing a Personal Cooling Garment for Hot and Humid Deep Mining Conditions 被引量:5
17
作者 Chady Al Sayed Ludwig Vinches Stéphane Hallé 《Open Journal of Optimization》 2016年第1期35-43,共9页
Workers exposed to hot and humid conditions suffer from heat stress that affects their concentration and can potentially lead to an increase in workplace accidents. To minimize heat stress, protective equipment may be... Workers exposed to hot and humid conditions suffer from heat stress that affects their concentration and can potentially lead to an increase in workplace accidents. To minimize heat stress, protective equipment may be worn, such as personal cooling garments. This paper presents and discusses the performances, advantages and disadvantages of existing personal cooling garments, namely air-cooled, liquid-cooled, phase change, hybrid, gas expansion and vacuum desiccant cooling garments, and a thermoelectric cooling technology. The main objective is to identify the cooling technique that would be most suitable for deep mining workers. It appears that no cooling technology currently on the market is perfectly compatible with this type of mining environment. However, combining two or more cooling technologies into a single hybrid system could be the solution to an optimized cooling garment for deep mines. 展开更多
关键词 Personal Cooling Garment Heat Stress thermal efficiency Deep Mines
下载PDF
Development Features of Supercritical (Ultra-Supercritical) Technology in the World and Experiences We Can Learn 被引量:5
18
作者 Weixiang Ye 《Journal of Power and Energy Engineering》 2016年第6期1-3,共3页
The development and technical characteristics in different stages of supercritical (ultra-Supercritical) technology abroad are introduced in this paper. At the same time, according to the development trend of supercri... The development and technical characteristics in different stages of supercritical (ultra-Supercritical) technology abroad are introduced in this paper. At the same time, according to the development trend of supercritical (ultra-supercritical) technology, the corresponding revelations are given in this paper. That is: It is an inevitable choice to develop supercritical (ultra-supercritical) technology if we want to improve the thermal efficiency and heat efficiency. 展开更多
关键词 Supercritical (Ultra-Supercritical) Technology The thermal efficiency Heat efficiency
下载PDF
Evaluation of the Influence of Ambient Temperature on the Performance of the Trans-Amadi Gas Turbine Plant 被引量:1
19
作者 Emughiphel Nelson Igoma Barinaada Thaddeus Lebele-Alawa John Sodiki 《Journal of Power and Energy Engineering》 2016年第11期19-31,共13页
This paper examines the effects of ambient temperature on the Trans-Amadi gas turbine power station Phase II. The investigation took thirteen (13) months (January 2012 to January 2013) during which plant data were mon... This paper examines the effects of ambient temperature on the Trans-Amadi gas turbine power station Phase II. The investigation took thirteen (13) months (January 2012 to January 2013) during which plant data were monitored and operational Logsheets like turbine logsheets, plant—auxiliaries’ logsheets and generator logsheets were studied. The gas turbine (GT) that was under investigation was GT-2: MS5001 Nuovopignone with designed installed capacity of 25.0 Megawatts (MW). The result of the study shows that a 1℃ rise of the ambient temperature is responsible for the following: 0% - 0.12% decrease in the power output, 0% - 0.12% increase in the power differential, 0% - 1.17% decrease in the thermal efficiency, 0% - 27.18% increase in the heat rate and 0% - 3.57% increase in the specific fuel consumption. An ambient temperature of 30℃ is found to yield minimal fuel consumption. 展开更多
关键词 Ambient Temperature PERFORMANCE Gas Turbine Power and thermal efficiency
下载PDF
Influence of quantum degeneracy on the performance of a gas Stirling engine cycle
20
作者 何济洲 毛之远 王建辉 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第9期1953-1959,共7页
Based on the state equation of an ideal quantum gas, the regenerative loss of a Stirling engine cycle working with an ideal quantum gas is calculated. Thermal efficiency of the cycle is derived. Furthermore, under the... Based on the state equation of an ideal quantum gas, the regenerative loss of a Stirling engine cycle working with an ideal quantum gas is calculated. Thermal efficiency of the cycle is derived. Furthermore, under the condition of quantum degeneracy, several special thermal efficiencies are discussed. Ratios of thermal efficiencies versus the temperature ratio and volume ratio of the cycle are made. It is found that the thermal efficiency of the cycle not only depends on high and low temperatures but also on maximum and minimum volumes. In a classical gas state the thermal efficiency of the cycle is equal to that of the Carnot cycle. In an ideal quantum gas state the thermal efficiency of the cycle is smaller than that of the Carnot cycle. This will be significant for deeper understanding of the gas Stirling engine cycle. 展开更多
关键词 Stirling engine cycle ideal quantum gas regenerative characteristics thermal efficiency
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部