Real-world passive radiative cooling requires highly emissive,selective,and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the...Real-world passive radiative cooling requires highly emissive,selective,and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the net cooling power.Despite various selective thermal emitters have been demonstrated,it is still challenging to achieve these conditions sim-ultaneously because of the extreme difficulty in controlling thermal emission of photonic structures in multidimension.Here we demonstrated hybrid polar dielectric metasurface thermal emitters with machine learning inverse design,en-abling a high emissivity of~0.92 within the atmospheric transparency window 8-13μm,a large spectral selectivity of~1.8 and a wide emission angle up to 80 degrees,simultaneously.This selective and omnidirectional thermal emitter has led to a new record of temperature reduction as large as~15.4°C under strong solar irradiation of~800 W/m2,signific-antly surpassing the state-of-the-art results.The designed structures also show great potential in tackling the urban heat island effect,with modelling results suggesting a large energy saving and deployment area reduction.This research will make significant impact on passive radiative cooling,thermal energy photonics and tackling global climate change.展开更多
We introduce a novel method to create mid-infrared(MIR)thermal emitters using fully epitaxial,metal-free structures.Through the strategic use of epsilon-near-zero(ENZ)thin films in InAs layers,we achieve a narrow-band...We introduce a novel method to create mid-infrared(MIR)thermal emitters using fully epitaxial,metal-free structures.Through the strategic use of epsilon-near-zero(ENZ)thin films in InAs layers,we achieve a narrow-band,wide-angle,and p-polarized thermal emission spectra.This approach,employing molecular beam epitaxy,circumvents the complexities associated with current layered structures and yields temperature-resistant emission wavelengths.Our findings contribute a promising route towards simpler,more efficient MIR optoelectronic devices.展开更多
The thermal emittance of Cr film, as an IR reflector, was investigated for the use in SSAC. The Cr thin films with different thicknesses were deposited on silicon wafers, optical quartz and stainless steel substrates ...The thermal emittance of Cr film, as an IR reflector, was investigated for the use in SSAC. The Cr thin films with different thicknesses were deposited on silicon wafers, optical quartz and stainless steel substrates by cathodic arc ion plating technology as a metallic IR reflector layer in SSAC. The thickness of Cr thin films was optimized to achieve the minimum thermal emittance. The effects of structural, microstructural, optical, surface and cross-sectional morphological properties of Cr thin films were investigated on the emittance. An optimal thickness about 450 nm of the Cr thin film for the lowest total thermal emittance of 0.05 was obtained. The experimental results suggested that the Cr metallic thin film with optimal thickness could be used as an effective infrared reflector for the development of SSAC structure.展开更多
Based on the multi-slit method, a new method is introduced to measure the nonlinear force caused emittance growth in a RF photoinjector. It is possible to reconstruct the phase space of a beam under some conditions by...Based on the multi-slit method, a new method is introduced to measure the nonlinear force caused emittance growth in a RF photoinjector. It is possible to reconstruct the phase space of a beam under some conditions by the multi-slit method. Based on the reconstructed phase space, besides the emittance, the emittance growth from the distortion of the phase space can also be measured. The emittance growth results from the effects of nonlinear force acting on electron, which is very important for the high quality beam in a RF photoinjector.展开更多
High efficiency, stable organic light-emitting diodes (OLEDs) based on 2-pheyl-4'-carbazole-9-H-Thioxanthen-9- one-10, 10-dioxide (TXO-PhCz) with different doping concentration are constructed. The stability of t...High efficiency, stable organic light-emitting diodes (OLEDs) based on 2-pheyl-4'-carbazole-9-H-Thioxanthen-9- one-10, 10-dioxide (TXO-PhCz) with different doping concentration are constructed. The stability of the encap- sulated devices are investigated in detail. The devices with the 10 wt% doped TXO-PhCz emitter layer (EML) show the best performance with a current efficiency of 52.1 cd/A, a power efficiency of 32.71re^W, and an external quantum efficiency (EQE) of 17.7%. The devices based on the lOwt%-doped TXO-PhCz EML show the best operational stability with a half-life time (LTSO) of 8Oh, which is 8 h longer than that of the reference devices based on fac-tris(2-phenylpyridinato)iridium( Ⅲ) (Ir(ppy)a). These indicate excellent stability of TXO-PhCz for redox and oxidation processes under electrical excitation and TXO-PhCz can be potentially used as the emitters for OLEDs with high efficiency and excellent stability. The high-performance device based on TXO-PhCz with high stability can be further improved by the optimization of the encapsulation technology and the development of a new host for TXO-PhCz.展开更多
Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infra...Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infrared transmission window.However,high R_(solar) is usually achieved by increasing the coating's thickness,which not only increases materials' cost but also impairs heat transfer.Additionally,the desired high R_(solar) is vulnerable to dust pollution in the outdoors.In this work,a thin paint was designed by mixing hBN plates,PFOTS,and IPA. R_(solar)=0.963 and ε_(LWIR)=0.927 was achieved at a thickness of 150 μm due to the high backscattering ability of scatters.A high through-plane thermal conductivity(~1.82 W m^(-1) K^(-1)) also can be obtained.In addition,the porous structure coupled with the binder PFOTS resulted in a contact angle of 154°,demonstrating excellent durability under dust contamination.Outdoor experiments showed that the thin paint can obtain a 2.3℃ lower temperature for sub-ambient cooling than the reference PDRC coating in the daytime.Furtherly,the above-ambient heat dissipation performance can be enhanced by spraying the thin paint on a 3D heat sink,which was 15.7℃ lower than the reference 1D structure,demonstrating excellent performance for durable and scalable PDRC applications.展开更多
Controlling the emissivity of a thermal emitter has attracted growing interest,with a view toward a new generation of thermal emission devices.To date,all demonstrations have involved using sustained external electric...Controlling the emissivity of a thermal emitter has attracted growing interest,with a view toward a new generation of thermal emission devices.To date,all demonstrations have involved using sustained external electric or thermal consumption to maintain a desired emissivity.In the present study,we demonstrated control over the emissivity of a thermal emitter consisting of a film of phase-changing material Ge2Sb2Te5(GST)on top of a metal film.This thermal emitter achieves broad wavelength-selective spectral emissivity in the mid-infrared.The peak emissivity approaches the ideal blackbody maximum,and a maximum extinction ratio of 410 dB is attainable by switching the GST between the crystalline and amorphous phases.By controlling the intermediate phases,the emissivity can be continuously tuned.This switchable,tunable,wavelength-selective and thermally stable thermal emitter will pave the way toward the ultimate control of thermal emissivity in the field of fundamental science as well as for energy harvesting and thermal control applications,including thermophotovoltaics,light sources,infrared imaging and radiative coolers.展开更多
A thermal emitter composed of a frequency-selective surface metamaterial layer and a hexagonal boron nitride-encapsulated graphene filament is demonstrated. The broadband thermal emission of the metamaterial (consist...A thermal emitter composed of a frequency-selective surface metamaterial layer and a hexagonal boron nitride-encapsulated graphene filament is demonstrated. The broadband thermal emission of the metamaterial (consisting of ring resonators) was tailored into two discrete bands, and the measured reflection and emission spectra agreed well with the simulation results. The high modulation frequencies that can be obtained in these devices, coupled with their operation in air, confirm their feasibility for use in applications such as gas sensing.展开更多
Producing high-brightness and high-charge(〉100 pC) electron bunches at blowout regime requires ultrashort laser pulses with high fluence. The effects of laser pulse heating of the copper photocathode are analyzed i...Producing high-brightness and high-charge(〉100 pC) electron bunches at blowout regime requires ultrashort laser pulses with high fluence. The effects of laser pulse heating of the copper photocathode are analyzed in this paper. The electron and lattice temperature is calculated using an improved two-temperature model, and an extended Dowell-Schmerge model is employed to calculate the thermal emittance and quantum efficiency. A timedependent growth of the thermal emittance and the quantum efficiency is observed. For a fixed amount of charge,the projected thermal emittance increases with decreasing laser radius, and this effect should be taken into account in laser optimization at blowout regime. Moreover, laser damage threshold fluence is simulated, showing that the maximum local fluence should be less than 40 mJ/cm^2 to prevent damage to the cathode.展开更多
We report a complementary metal oxide semiconductor(CMOS)compatible metamaterial-based spectrally selective absorber/emitter(MBSSAE)for infrared(IR)stealth,which has the low absorption/emissivity in the IR atmospheric...We report a complementary metal oxide semiconductor(CMOS)compatible metamaterial-based spectrally selective absorber/emitter(MBSSAE)for infrared(IR)stealth,which has the low absorption/emissivity in the IR atmospheric transmission window(3μm-5μm,8μm-14μm)and ultra-high and broadband absorption/emissivity in the IR non-atmospheric window(5μm-8μm).We propose a novel method for the broadband absorption/emissivity in 5μm-8μm with incorporation of an epsilon-near-zero(ENZ)material between the top patterned aluminum(Al)disks layer and the silicon oxide(SiO_(2))spacer layer.With an appropriate design,the peaks in the IR atmospheric transmission window can be suppressed while the peak intensity in the non-atmospheric window remains high.The optimized MBSSAE has an average absorption/emissivity less than 10%in 8μm-14μm and less than 6%in 3μm-5μm.And the average absorption/emissivity in 5μm-8μm is approximately over 64%.This proposed scheme may introduce the opportunities for the large-area and low-cost infrared stealth coating,as well as for the radiative cooling,spectral selective thermal detector,optical sensor,and thermophotovoltaic applications.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.62175154)the Shanghai Pujiang Program(20PJ1411900)+2 种基金the Shanghai Science and Technology Program(21ZR1445500)the Shanghai Yangfan Program(22YF1430200)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘Real-world passive radiative cooling requires highly emissive,selective,and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the net cooling power.Despite various selective thermal emitters have been demonstrated,it is still challenging to achieve these conditions sim-ultaneously because of the extreme difficulty in controlling thermal emission of photonic structures in multidimension.Here we demonstrated hybrid polar dielectric metasurface thermal emitters with machine learning inverse design,en-abling a high emissivity of~0.92 within the atmospheric transparency window 8-13μm,a large spectral selectivity of~1.8 and a wide emission angle up to 80 degrees,simultaneously.This selective and omnidirectional thermal emitter has led to a new record of temperature reduction as large as~15.4°C under strong solar irradiation of~800 W/m2,signific-antly surpassing the state-of-the-art results.The designed structures also show great potential in tackling the urban heat island effect,with modelling results suggesting a large energy saving and deployment area reduction.This research will make significant impact on passive radiative cooling,thermal energy photonics and tackling global climate change.
文摘We introduce a novel method to create mid-infrared(MIR)thermal emitters using fully epitaxial,metal-free structures.Through the strategic use of epsilon-near-zero(ENZ)thin films in InAs layers,we achieve a narrow-band,wide-angle,and p-polarized thermal emission spectra.This approach,employing molecular beam epitaxy,circumvents the complexities associated with current layered structures and yields temperature-resistant emission wavelengths.Our findings contribute a promising route towards simpler,more efficient MIR optoelectronic devices.
基金Funded by the National Natural Science Foundation of China(No.51402208)the Project by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(No.2016-KF-11)
文摘The thermal emittance of Cr film, as an IR reflector, was investigated for the use in SSAC. The Cr thin films with different thicknesses were deposited on silicon wafers, optical quartz and stainless steel substrates by cathodic arc ion plating technology as a metallic IR reflector layer in SSAC. The thickness of Cr thin films was optimized to achieve the minimum thermal emittance. The effects of structural, microstructural, optical, surface and cross-sectional morphological properties of Cr thin films were investigated on the emittance. An optimal thickness about 450 nm of the Cr thin film for the lowest total thermal emittance of 0.05 was obtained. The experimental results suggested that the Cr metallic thin film with optimal thickness could be used as an effective infrared reflector for the development of SSAC structure.
基金Project supported by the National Natural Science Foundation of China (Grant No 10347009).
文摘Based on the multi-slit method, a new method is introduced to measure the nonlinear force caused emittance growth in a RF photoinjector. It is possible to reconstruct the phase space of a beam under some conditions by the multi-slit method. Based on the reconstructed phase space, besides the emittance, the emittance growth from the distortion of the phase space can also be measured. The emittance growth results from the effects of nonlinear force acting on electron, which is very important for the high quality beam in a RF photoinjector.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61420106002,51373189,61178061,and 61227008the Hundred Talents Program of the Chinese Academy of Sciences,the National Basic Research Program of China under Grant No 2014CB932600the Start-Up Fund of the Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences
文摘High efficiency, stable organic light-emitting diodes (OLEDs) based on 2-pheyl-4'-carbazole-9-H-Thioxanthen-9- one-10, 10-dioxide (TXO-PhCz) with different doping concentration are constructed. The stability of the encap- sulated devices are investigated in detail. The devices with the 10 wt% doped TXO-PhCz emitter layer (EML) show the best performance with a current efficiency of 52.1 cd/A, a power efficiency of 32.71re^W, and an external quantum efficiency (EQE) of 17.7%. The devices based on the lOwt%-doped TXO-PhCz EML show the best operational stability with a half-life time (LTSO) of 8Oh, which is 8 h longer than that of the reference devices based on fac-tris(2-phenylpyridinato)iridium( Ⅲ) (Ir(ppy)a). These indicate excellent stability of TXO-PhCz for redox and oxidation processes under electrical excitation and TXO-PhCz can be potentially used as the emitters for OLEDs with high efficiency and excellent stability. The high-performance device based on TXO-PhCz with high stability can be further improved by the optimization of the encapsulation technology and the development of a new host for TXO-PhCz.
基金financially supported by the Natural Science Foundation of Hunan Province(Grant No.2021JJ40732)the Central South University Innovation-Driven Research Programme(Grant No.2023CXQD012)。
文摘Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infrared transmission window.However,high R_(solar) is usually achieved by increasing the coating's thickness,which not only increases materials' cost but also impairs heat transfer.Additionally,the desired high R_(solar) is vulnerable to dust pollution in the outdoors.In this work,a thin paint was designed by mixing hBN plates,PFOTS,and IPA. R_(solar)=0.963 and ε_(LWIR)=0.927 was achieved at a thickness of 150 μm due to the high backscattering ability of scatters.A high through-plane thermal conductivity(~1.82 W m^(-1) K^(-1)) also can be obtained.In addition,the porous structure coupled with the binder PFOTS resulted in a contact angle of 154°,demonstrating excellent durability under dust contamination.Outdoor experiments showed that the thin paint can obtain a 2.3℃ lower temperature for sub-ambient cooling than the reference PDRC coating in the daytime.Furtherly,the above-ambient heat dissipation performance can be enhanced by spraying the thin paint on a 3D heat sink,which was 15.7℃ lower than the reference 1D structure,demonstrating excellent performance for durable and scalable PDRC applications.
基金supported by the National Natural Science Foundation of China(grant nos 61425023,61575177,61275030 and 61235007).
文摘Controlling the emissivity of a thermal emitter has attracted growing interest,with a view toward a new generation of thermal emission devices.To date,all demonstrations have involved using sustained external electric or thermal consumption to maintain a desired emissivity.In the present study,we demonstrated control over the emissivity of a thermal emitter consisting of a film of phase-changing material Ge2Sb2Te5(GST)on top of a metal film.This thermal emitter achieves broad wavelength-selective spectral emissivity in the mid-infrared.The peak emissivity approaches the ideal blackbody maximum,and a maximum extinction ratio of 410 dB is attainable by switching the GST between the crystalline and amorphous phases.By controlling the intermediate phases,the emissivity can be continuously tuned.This switchable,tunable,wavelength-selective and thermally stable thermal emitter will pave the way toward the ultimate control of thermal emissivity in the field of fundamental science as well as for energy harvesting and thermal control applications,including thermophotovoltaics,light sources,infrared imaging and radiative coolers.
文摘A thermal emitter composed of a frequency-selective surface metamaterial layer and a hexagonal boron nitride-encapsulated graphene filament is demonstrated. The broadband thermal emission of the metamaterial (consisting of ring resonators) was tailored into two discrete bands, and the measured reflection and emission spectra agreed well with the simulation results. The high modulation frequencies that can be obtained in these devices, coupled with their operation in air, confirm their feasibility for use in applications such as gas sensing.
基金Supported by National Natural Science Foundation of China(11375097)
文摘Producing high-brightness and high-charge(〉100 pC) electron bunches at blowout regime requires ultrashort laser pulses with high fluence. The effects of laser pulse heating of the copper photocathode are analyzed in this paper. The electron and lattice temperature is calculated using an improved two-temperature model, and an extended Dowell-Schmerge model is employed to calculate the thermal emittance and quantum efficiency. A timedependent growth of the thermal emittance and the quantum efficiency is observed. For a fixed amount of charge,the projected thermal emittance increases with decreasing laser radius, and this effect should be taken into account in laser optimization at blowout regime. Moreover, laser damage threshold fluence is simulated, showing that the maximum local fluence should be less than 40 mJ/cm^2 to prevent damage to the cathode.
基金supported by the National Natural Science Foundation of China(Grant Nos.61734002,61435010,61177035,and 61421002).
文摘We report a complementary metal oxide semiconductor(CMOS)compatible metamaterial-based spectrally selective absorber/emitter(MBSSAE)for infrared(IR)stealth,which has the low absorption/emissivity in the IR atmospheric transmission window(3μm-5μm,8μm-14μm)and ultra-high and broadband absorption/emissivity in the IR non-atmospheric window(5μm-8μm).We propose a novel method for the broadband absorption/emissivity in 5μm-8μm with incorporation of an epsilon-near-zero(ENZ)material between the top patterned aluminum(Al)disks layer and the silicon oxide(SiO_(2))spacer layer.With an appropriate design,the peaks in the IR atmospheric transmission window can be suppressed while the peak intensity in the non-atmospheric window remains high.The optimized MBSSAE has an average absorption/emissivity less than 10%in 8μm-14μm and less than 6%in 3μm-5μm.And the average absorption/emissivity in 5μm-8μm is approximately over 64%.This proposed scheme may introduce the opportunities for the large-area and low-cost infrared stealth coating,as well as for the radiative cooling,spectral selective thermal detector,optical sensor,and thermophotovoltaic applications.