期刊文献+
共找到12,250篇文章
< 1 2 250 >
每页显示 20 50 100
A creep model for ultra-deep salt rock considering thermal-mechanical damage under triaxial stress conditions
1
作者 Chao Liang Jianfeng Liu +3 位作者 Jianxiong Yang Huining Xu Zhaowei Chen Lina Ran 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期588-596,共9页
To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloadin... To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems. 展开更多
关键词 Creep experiments Creep model thermal and mechanical damage Fractional derivative
下载PDF
Extraction method of nanoparticles concentration distribution from magnetic particle image and its application in thermal damage of magnetic hyperthermia
2
作者 汤云东 陈鸣 +1 位作者 Rodolfo C.C.Flesch 金涛 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期304-311,共8页
Magnetic particle imaging(MPI)technology can generate a real-time magnetic nanoparticle(MNP)distribution image for biological tissues,and its use can overcome the limitations imposed in magnetic hyperthermia treatment... Magnetic particle imaging(MPI)technology can generate a real-time magnetic nanoparticle(MNP)distribution image for biological tissues,and its use can overcome the limitations imposed in magnetic hyperthermia treatments by the unpredictable MNP distribution after the intratumoral injection of nanofluid.However,the MNP concentration distribution is generally difficult to be extracted from MPI images.This study proposes an approach to extract the corresponding concentration value of each pixel from an MPI image by a least squares method(LSM),which is then translated as MNP concentration distribution by an interpolation function.The resulting MPI-based concentration distribution is used to evaluate the treatment effect and the results are compared with the ones of two baseline cases under the same dose:uniform distribution and MPI-based distribution considering diffusion.Additionally,the treatment effect for all these cases is affected by the blood perfusion rate,which is also investigated deeply in this study.The results demonstrate that the proposed method can be used to effectively reconstruct the concentration distribution from MPI images,and that the weighted LSM considering a quartic polynomial for interpolation provides the best results with respect to other cases considered.Furthermore,the results show that the uniformity of MNP distribution has a positive correlation with both therapeutic temperature distribution and thermal damage degree for the same dose and a critical power dissipation value in the MNPs.The MNPs uniformity inside biological tissue can be improved by the diffusion behavior after the nanofluid injection,which can ultimately reflect as an improvement of treatment effect.In addition,the blood perfusion rate considering local temperature can have a positive effect on the treatment compared to the case which considers a constant value during magnetic hyperthermia. 展开更多
关键词 magnetic hyperthermia magnetic nanoparticles distribution thermal damage blood perfusion rate
下载PDF
Deformation characteristics and damage ontologies of soft and hard composite rock masses under impact loading
3
作者 LI Jinhua ZHANG Tianyu +3 位作者 WU Baolin SU Peili YANG Yang WANG Pan 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1715-1727,共13页
As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study ... As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study the dynamic properties of soft and hard composite rocks with different thickness ratios, this paper utilizes cement, quartz sand and gypsum powder to construct soft and hard composite rock specimens and utilizes a combination of indoor tests, numerical calculations, and theoretical analyses to investigate the mechanical properties of soft and hard composite rock bodies. The test results reveal that:(1) When the proportion of hard rock increases from 20% to 50%, the strength of the combined rock body increases by 69.14 MPa and 87 MPa when the hard rock face and soft rock face are loaded, respectively;however, when the proportion of hard rock is the same, the compressive strength of the hard rock face impact is 9%-17% greater than that of the soft rock face impact;(2) When a specimen of soft and hard combined rock body is subjected to impact loading, the damage mode involves mixed tension and shear damage, and the cracks generally first appear at the ends of the specimen, then develop on the laminar surface from the impact surface, and finally end in the overall damage of the soft rock part. The development rate and the total number of cracks in the same specimen when the hard rock face is impacted are significantly greater than those when the soft rock face is impacted;(3) By introducing Weibull’s statistical strength theory to establish the damage variables of soft-hard combined rock bodies, combined with the DP strength criterion, the damage model and the Kelvin body are concatenated to obtain a statistical damage constitutive model, which can better fit the full stress-strain curve of soft-hard combined rock body specimens under a single impact load. 展开更多
关键词 Soft and hard composite rock mass Dynamic properties Split Hopkinson pressure bar(SHPB) Numerical simulation Intrinsic damage model
下载PDF
Thermal stress damage mechanism in single-crystal germanium caused by 1080 nm laser irradiation
4
作者 沙银川 李泽文 +2 位作者 贾志超 韩冰 倪晓武 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期572-578,共7页
The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model base... The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model based on Fourier's heat conduction equation,Hooke's law and the Alexander–Hasson equation was developed to analyze the thermal stress damage mechanism involved.The damage morphology of the ablated samples was observed using an optical microscope.The results show that the cooling process has an important influence on fracture in the laser-irradiated region of single-crystal germanium.Fracture is the result of a combination of thermal stress and reduction in local yield strength. 展开更多
关键词 thermal stress single-crystal germanium FRACTURE damage mechanism
下载PDF
Incompatible thermal deformation of interlayers and corresponding damage mechanism of high-speed railway track structure
5
作者 Guotang Zhao Lei Zhao Yu Liu 《High-Speed Railway》 2023年第1期37-46,共10页
In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field w... In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field within the ballastless track bed shows significant non-uniformity due to the large difference in the materials of various structure layers,leading to a considerable difference in the force bearing of different structure layers.Unit Ballastless Track Bed(UBTB)is most significantly affected by temperature gradient.The thermal deformation of interlayers within UBTB follows the trend of ellipsoid-shape buckling under the effect of the temperature gradient,resulting in a variation of the contact relationship between structure layers and a significant periodic irregularity on the rail.When the train travels on the periodically irregular rail,the structure layers are locally contacted,and the contact zone moves with the variation of the wheel position.This wheel-followed local contact greatly magnifies the interlayer stress,causes interlayer damage,and leads to a considerable increase in the bending moment of the track slab.Continuous Ballastless Track Bed(CBTB)is most significantly affected by the overall temperature variation,which may cause damage to the joint in CBTB.Under the combined action of the overall temperature rise and the temperature gradient,the interlayer damage continuously expands,resulting in bonding failure between structural layers.The thermal force in the continuous track slabs will cause the up-heave buckling and the sudden large deformation of the track slab,and the loss of constraint boundary of the horizontal stability.For the design of a ballastless track structure,the change of bearing status and structural damage related to the incompatible thermal deformation of interlayers should be considered. 展开更多
关键词 High-speed railway Ballastless track bed Incompatible thermal deformation damage mechanism
下载PDF
Temperature dependence of mechanical properties and damage evolution of hot dry rocks under rapid cooling
6
作者 Longjun Dong Yihan Zhang +2 位作者 Lichang Wang Lu Wang Shen Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期645-660,共16页
Understanding the differences in mechanical properties and damage characteristics of granitoid under high temperatures is crucial for exploring deep geothermal resources.This study analyzes the evolution of the acoust... Understanding the differences in mechanical properties and damage characteristics of granitoid under high temperatures is crucial for exploring deep geothermal resources.This study analyzes the evolution of the acoustic emission(AE)characteristics and mechanical parameters of granodiorite and granite after heating and water cooling by uniaxial compression and variable-angle shear tests under different temperature gradients.We identify their changes in mesostructure and mineral composition with electron probe microanalysis and scanning electron microscopy.Results show that these two hot dry rocks have similar diagenetic minerals and microstructure,but show significantly different mechanical and acoustic characteristics,and even opposing evolution trends in a certain temperature range.At the temperatures ranging from 100℃to 500℃,the compressive and shear mechanical properties of granodiorite switch repeatedly between weakening and strengthening,and those of granite show a continuous weakening trend.At 600℃,both rocks exhibit a deterioration of mechanical properties.The damage mode of granite is characterized by initiating at low stress,exponential evolutionary activity,and intensified energy release.In contrast,granodiorite exhibits the characteristics of initiating at high stress,volatile evolutionary activity,and intermittent energy release,due to its more stable microstructure and fewer thermal defects compared to granite.As the temperature increases,the initiation and propagation of secondary cracks in granodiorite are suppressed to a certain extent,and the seismicity and brittleness are enhanced.The subtle differences in grain size,microscopic heterogeneity,and mineral composition of the two hot dry rocks determine the different acoustic-mechanical characteristics under heating and cooling,and the evolution trends with temperature.These findings are of great significance for the scientific and efficient construction of rock mass engineering by rationally utilizing different rock strata properties. 展开更多
关键词 Hot dry rock Acoustic emission Mechanical properties High temperature damage
下载PDF
Effect of neutral polymeric bonding agent on tensile mechanical properties and damage evolution of NEPE propellant
7
作者 M.Wubuliaisan Yanqing Wu +3 位作者 Xiao Hou Kun Yang Hongzheng Duan Xinmei Yin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期357-367,共11页
Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of ne... Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder. 展开更多
关键词 Solid propellant Bonding agent Mechanical properties damage evolution Cohesive-zone model Interface debonding
下载PDF
Spatial gradient distributions of thermal shock-induced damage to granite 被引量:15
8
作者 Lifeng Fan Jingwei Gao +1 位作者 Xiuli Du Zhijun Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第5期917-926,共10页
In this study,we attempted to investigate the spatial gradient distributions of thermal shock-induced damage to granite with respect to associated deterioration mechanisms.First,thermal shock experiments were conducte... In this study,we attempted to investigate the spatial gradient distributions of thermal shock-induced damage to granite with respect to associated deterioration mechanisms.First,thermal shock experiments were conducted on granite specimens by slowly preheating the specimens to high temperatures,followed by rapid cooling in tap water.Then,the spatial gradient distributions of thermal shock-induced damage were investigated by computed tomography(CT)and image analysis techniques.Finally,the influence of the preheating temperature on the spatial gradients of the damage was discussed.The results show that the thermal shock induced by rapid cooling can cause more damage to granite than that induced by slow cooling.The thermal shock induced by rapid cooling can cause spatial gradient distributions of the damage to granite.The damage near the specimen surface was at a maximum,while the damage inside the specimen was at a minimum.In addition,the preheating temperature can significantly influence the spatial gradient distributions of the thermal shock-induced damage.The spatial gradient distribution of damage increased as the preheating temperature increased and then decreased significantly over 600C.When the preheating temperature was sufficiently high(e.g.800C),the gradient can be ignored. 展开更多
关键词 Rock properties thermal shock High temperature thermally induced damage Computed tomography(CT)technique
下载PDF
An Explosive Organic/Inorganic Hybrid: Synthesis and Thermal Property of Octa(2,4-dinitrophenyl)silsesquioxane 被引量:6
9
作者 CHENHong-Ji 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第1期42-45,共4页
Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPh... Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPhS in a mixed acid solution of nitric and sulfuric acids at about 60 ℃. Their molecular structures were determined by DRIFTS, 1H NMR, 13C NMR spectra analysis. The thermal analysis shows that ODNPhS is an explosive that detonates at about 420 ℃. 展开更多
关键词 Core-shell nanocomposite Organic/inorganic hybrid Octa(2 4-dinitrophenyl)silsquioxane thermal property
下载PDF
An interface shear damage model of chromium coating/steel substrate under thermal erosion load 被引量:6
10
作者 Xiao-long Li Yong Zang +3 位作者 Yong Lian Min-yu Ma Lei Mu Qin Qin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期405-415,共11页
The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-e... The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-element damage tends to occur within the Cr coating/steel substrate interface,leading to a gradual deterioration in macro-mechanical properties for the material in the related region.In order to mimic this cyclic thermal load and,thereby,study the thermal erosion behavior of the Cr coating on the barrel’s inner wall,a laser emitter is utilized in the current study.With the help of in-situ tensile test and finite element simulation results,a shear stress distribution law of the Cr coating/steel substrate and a change law of the interface ultimate shear strength are identified.Studies have shown that the Cr coating/steel substrate interface’s ultimate shear strength has a significant weakening effect due to increasing temperature.In this study,the interfacial ultimate shear strength decreases from 2.57 GPa(no erosion)to 1.02 GPa(laser power is 160 W).The data from this experiment is employed to establish a Cr coating/steel substrate interface shear damage model.And this model is used to predict the flaking process of Cr coating by finite element method.The simulation results show that the increase of coating crack spacing and coating thickness will increase the service life of gun barrel. 展开更多
关键词 Cr coating/steel substrate thermal erosion Finite element simulation Ultimate shear strength Interface shear damage model
下载PDF
Quantification of thermal damage in skin tissue 被引量:1
11
作者 徐峰 文婷 +1 位作者 卢天健 Seffen Keith 《Journal of Pharmaceutical Analysis》 SCIE CAS 2008年第1期1-8,共8页
Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments o... Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments of thermal treatments for disease and damage involving skin tissue, where the objective is to induce thermal damage precisely within targeted tissue structures but without affecting the surrounding, healthy tissue. Further, extended pain sensation induced by thermal damage has also brought great problem for burn patients. Thus, it is of great importance to quantify the thermal damage in skin tissue. In this paper, the available models and experimental methods for quantification of thermal damage in skin tissue are discussed. 展开更多
关键词 skin tissue thermal damage quantification
下载PDF
Synthesis,Structure and Thermal Property of a Cobalt Supramolecular Complex Containing N-[(4-Carboxyphenyl)-sulfonyl]glycine 被引量:1
12
作者 王永伟 王利亚 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第10期1579-1583,共5页
Utilizing N-[(4-carboxyphenyl)-sulfonyl]glycine (abbreviated as cbsglyH3),a new cobalt complex [Co(cbsglyH)(bipy)2]3H2O (bipy = 2,2'-bipyridine) has been synthesized under mild conditions and characterized ... Utilizing N-[(4-carboxyphenyl)-sulfonyl]glycine (abbreviated as cbsglyH3),a new cobalt complex [Co(cbsglyH)(bipy)2]3H2O (bipy = 2,2'-bipyridine) has been synthesized under mild conditions and characterized by IR,elemental analysis,thermogravimetric analysis and X-ray diffraction analysis. It crystallizes in the monoclinic system,space group C2/c with a = 34.978(3),b = 12.0437(11),c = 20.0041(19) ,β = 122.2990(10)°,V = 7123.0(11) 3,Z = 8,C29H28CoN5O9S,Mr = 681.55,μ = 0.593 mm-1,Dc = 1.271 Kg/m3,F(000) = 2816,the final R = 0.0434 and wR = 0.1351. The title complex is a monomeric compound which is further assembled by intermolecular hydrogen bonds into a 3-D supramolecular network. Thermogravimetric analysis illustrates that this complex begins decomposing at 100 ℃ and decompounding completely at 560 ℃. 展开更多
关键词 N-[(4-carboxyphenyl)-sulfonyl]glycine supramolecular complex thermal property
下载PDF
Synthesis,Crystal Structure and Thermal Property of a 2D Brick Wall Framework Constructed from a New Mononuclear Complex
13
作者 张云 张士真 +2 位作者 李建定 党娟 陶偌偈 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第9期1321-1326,共6页
One new coordination polymer with the chemical formula [CoCu2L2·K2·1.5C2H5OH]n(H4L = 2-hydroxy-3-[(E)-({3-[(2-hydroxybenzoyl)amino]propyl}imino)methyl] benzoic acid) has been synthesized based on the... One new coordination polymer with the chemical formula [CoCu2L2·K2·1.5C2H5OH]n(H4L = 2-hydroxy-3-[(E)-({3-[(2-hydroxybenzoyl)amino]propyl}imino)methyl] benzoic acid) has been synthesized based on the slow diffusion method,and characterized by IR spectroscopy,thermalgravimetric and X-ray diffraction analysis.It crystallizes in the monoclinic system,space group P21/n with a = 11.98860(10),b = 24.4279(3),c = 14.9008(2) ,β = 104.7490(10)°,V = 4220.01(8) 3,Z = 2,Mr = 1009.94,Dc = 1.590 g/cm3,F(000) = 2056,μ(MoKα) = 1.649 mm-1,the final R = 0.0411 and wR = 0.1178 for 5920 observed reflections with I 2σ(I).The compound possesses a 2D brick wall structure constructed from trinuclear units. 展开更多
关键词 coordination polymer crystal structure brick wall thermal property
下载PDF
Synthesis, Crystal Structure and Thermal Property of a Manganese(II) 4-Carboxyphenoxyacetate Complex
14
作者 霍丽华 高山 +3 位作者 刘继伟 谷长生 赵辉 赵经贵 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2005年第3期334-338,共5页
The manganese(II) complex, [Mn(phen)2(4-CPOA)(H2O)]?5H2O (4-CPOAH2 = 4- carboxyphenoxyacetic acid) has been synthesized and characterized by elemental analyses, IR, TG and single-crystal X-ray diffraction. The cryst... The manganese(II) complex, [Mn(phen)2(4-CPOA)(H2O)]?5H2O (4-CPOAH2 = 4- carboxyphenoxyacetic acid) has been synthesized and characterized by elemental analyses, IR, TG and single-crystal X-ray diffraction. The crystal is of monoclinic, space group C2/c, with a = 27.471(3), b = 18.490(4), c = 14.507(3) ?, β = 115.13(3)o, V = 6671(3) ?3, Z = 8, Mr = 717.58, Dc= 1.429 g/cm3, μ = 0.462 mm–1, F(000) = 2984, the final R = 0.0535 and wR = 0.1200 for 5413 observed reflections with I > 2σ(I). The Mn(II) atom is coordinated by one O atom of 4-carboxy- phenoxyacetate, four N atoms of two 1,10-phenanthroline and one water molecule, residing in a distorted octahedral environment. A supramolecular network structure is formed by hydrogen bonds and π-π stacking interactions. 展开更多
关键词 manganese (II) carboxylate complex crystal structure thermal property
下载PDF
Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
15
作者 赵壮壮 荀孟 +3 位作者 潘冠中 孙昀 周静涛 吴德馨 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期299-305,共7页
The 808-nm vertical cavity surface emitting laser(VCSEL) with strained In_(0.13)Ga_(0.75)Al_(0.12)As/Al_(0.3)Ga_(0.7)As quantum wells is designed and fabricated. Compared with the VCSELs with Al_(0.05)Ga_(0.95)As/Al_(... The 808-nm vertical cavity surface emitting laser(VCSEL) with strained In_(0.13)Ga_(0.75)Al_(0.12)As/Al_(0.3)Ga_(0.7)As quantum wells is designed and fabricated. Compared with the VCSELs with Al_(0.05)Ga_(0.95)As/Al_(0.3)Ga_(0.7)As quantum wells, the VCSEL with strained In_(0.13)Ga_(0.75)Al_(0.12)As/Al_(0.3)Ga_(0.7)As quantum wells is demonstrated to possess higher power conversion efficiency(PCE) and better temperature stability. The maximum PCE of 43.8% for 10-μm VCSEL is achieved at an ambient temperature of 30°C. The size-dependent thermal characteristics are also analyzed by characterizing the spectral power and output power. It demonstrates that small oxide-aperture VCSELs are advantageous for temperature-stable performance. 展开更多
关键词 808-nm VCSEL InGaAlAs/AlGaAs quantum wells thermal property
下载PDF
Synthesis,Characterization and Thermal Property of the Aluminum Boroxine-linked Compound with N-aryl Substituted β-Diketiminato Ligand
16
作者 HAO Peng-Fei YANG Jun-Juan +3 位作者 YANG Zhi MA Xiao-Li YANG Ying LI Jia-Rong 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2015年第5期729-734,共6页
The boroxine-linked organic aluminum compound LAl[OB(3-C4H3O)]2(μ-O) was accomplished by reacting LAl H2 {L =(Z)-4-[(2,6-diisopropylphenyl)amino]pent-3-en-2-ylidene-2,6-diisopropylaniline} with furan-3-ylboro... The boroxine-linked organic aluminum compound LAl[OB(3-C4H3O)]2(μ-O) was accomplished by reacting LAl H2 {L =(Z)-4-[(2,6-diisopropylphenyl)amino]pent-3-en-2-ylidene-2,6-diisopropylaniline} with furan-3-ylboronic acid in good yield.The title compound belongs to the orthorhombic system,space group Pnma with a = 10.9774(15),b = 19.369(3),c = 17.362(3) A,V = 3691.5(9) A^3,C37H47 Al B2N2O5,Mr = 648.37,Z = 4,Dc = 1.167 Mg/m^3,μ(Mo Kα) = 0.097 mm^–1,F(000) = 1384,S = 1.000,the final R = 0.0589 and w R = 0.1445 for 9138 observed reflections(I 〉 2σ(I)) and R = 0.0683 and w R = 0.1517 for all data.This compound is an unique example of a spiro-centered aluminum atom,showing the inorganic Al O3B2 ring fused to the organic C3N2 part.It was characterized by 1H NMR,IR,elemental analysis,and single-crystal X-ray structural analysis.Furthermore,the compound was studied by TG analysis as well as DSC. 展开更多
关键词 β-diketiminato ligand boroxine-linked aluminum compound thermal property
下载PDF
A THEORETICAL APPROACH TO THERMAL PROPERTY OF ARRAY OF CYLINDERS EMBEDDED IN HOMOGENEOUS MATRIX
17
作者 顾国庆 郑大昉 《Acta Mathematica Scientia》 SCIE CSCD 1992年第2期144-153,共10页
We investigate in this article the thermal coliductivity of array Of cylinders embedded in a homogeneous matrix. Using Green's function, we confirm that the method invented by Rayleigh can be generalized to deal w... We investigate in this article the thermal coliductivity of array Of cylinders embedded in a homogeneous matrix. Using Green's function, we confirm that the method invented by Rayleigh can be generalized to deal with thermal property of these systems. A technique for calculating effective thermal conductivities of these systems is proposed. As an example, we consider a system with square symmetry, and a neat formula for effective thermal conductivity is derived. We show that the method also includes the proof of Keller theorem. 展开更多
关键词 A THEORETICAL APPROACH TO thermal property OF ARRAY OF CYLINDERS EMBEDDED IN HOMOGENEOUS MATRIX
下载PDF
Numerical Approach to Simulate the Effect of Corrosion Damage on the Natural Frequency of Reinforced Concrete Structures
18
作者 Amthal Hakim Wael Slika +1 位作者 Rawan Machmouchi Adel Elkordi 《Structural Durability & Health Monitoring》 EI 2023年第3期175-194,共20页
Corrosion of reinforcing steel in concrete elements causes minor to major damage in different aspects.It may lead to spalling of concrete cover,reduction of section’s capacity and can alter the dynamic properties.For... Corrosion of reinforcing steel in concrete elements causes minor to major damage in different aspects.It may lead to spalling of concrete cover,reduction of section’s capacity and can alter the dynamic properties.For the dynamic properties,natural frequency is to be a reliable indicator of structural integrity that can be utilized in non-destructive corrosion assessment.Although the correlation between natural frequency and corrosion damage has been reflected in different experimental programs,few attempts have been made to investigate this relationship in forward modeling and/or structural health monitoring techniques.This can be attributed to the limited available data,the complex nature of corrosion,and the involvement of multidisciplinaryfields.Therefore,this study presents a numerical attempt to simulate the effect of corrosion damage on the natural frequency of the structure.The approach relies on simulating the time history response of the structure using a modified Bouc-Wen model that incorporates the nonlinear effects of corrosion.Then,modal analysis is utilized to assess the change in dynamic properties in the frequency domain.Tofinish up,regression algorithms are employed tofind optimal relationship between involved parameters,including corrosion damage as input,and natural frequency as output.The efficiency of the suggested framework is illustrated in thirteen buildings with cantilevered column lateral force-resisting system and different levels of corrosion. 展开更多
关键词 CORROSION concrete damage dynamic properties natural frequency nonlinear analysis modal analysis machine learning
下载PDF
Effect of loading rates on the characteristics of thermal damage for mudstone under different temperatures 被引量:8
19
作者 Mao Rongrong Mao Xianbiao +1 位作者 Zhang Lianying Liu Ruixue 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期797-801,共5页
The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temper... The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temperature furnace MTS652.02.The mechanical properties of mudstone with various loading rates are studied under different temperature conditions.The results show that when temperature increases from room temperature to 400℃ and loading rate is less than 0.03 mm/s,the peak strength of mudstone specimen decreases as loading rate increases,while the various peak strengths show significant differences when loading rate exceeds 0.03 mm/s.At room temperature,the elastic modulus decreases at the first time and then increases with loading rate rising.When the temperature is between200 and 400℃,the elastic modulus presents a decreasing trend with increasing loading rate.With increasing the loading rate,the number of fragments in mudstone becomes larger and even the powder is observed in mudstone with higher loading rate.Under high loading rate,the failure mode of mudstone specimens under different temperatures is mainly conical damage. 展开更多
关键词 加载速率 温度条件 泥岩 低弹性模量 特性 热害 单轴压缩试验 静态力学性能
下载PDF
Hydrothermal Synthesis, Crystal Structure and Thermal Property of a Coordination Polymer Constructed by Ce(Ⅲ) and Succinate Ions
20
作者 张载超 赵朴素 +4 位作者 秦永其 朱凤霞 朱长磊 胡鑫明 李荣清 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2019年第3期376-383,共8页
A new three-dimensional coordination polymer [Ce_2(C_4H_4O_4)_3(H_2O)_2]_n·3.2 nH_2 O, constructed by Ce(Ⅲ) ion and succinate ion and lattice water molecules has been synthesized under hydrothermal conditions. I... A new three-dimensional coordination polymer [Ce_2(C_4H_4O_4)_3(H_2O)_2]_n·3.2 nH_2 O, constructed by Ce(Ⅲ) ion and succinate ion and lattice water molecules has been synthesized under hydrothermal conditions. It crystallizes in triclinic system, space group P1 with a = 7.8865(6), b = 12.0260(8), c = 12.2598(9) ?, α = 112.456(2)o, β = 90.046(2)o, γ = 100.423(2)o, Mr = 722.14, V = 1053.73(13) ?~3, Z = 2, Dc = 2.276 g/cm^3, μ = 4.35/mm, F(000) = 696, GOF = 1.029, R = 0.0203 and w R = 0.0570. The asymmetric unit contains two Ce^(3+) cations and both of them are nine-coordinated and their coordination geometries can be described as two distorted monocapped square antiprisms. In the title compound, a three-dimensional coordination network with one-dimensional hexagon honeycomb-like channels along the a axis is generated. TG measurement has been carried out, and its result analysis along with the powder XRD determination indicates the residue to be CeO_2. 展开更多
关键词 HYDROthermal synthesis crystal structure thermal property cerium(Ⅲ) complex
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部