This paper describes new building construction methods that utilize soil thermal stabilization reghnes to compensate for negative environmental wanning and anthropogenic factors that impair fundament stability. Based ...This paper describes new building construction methods that utilize soil thermal stabilization reghnes to compensate for negative environmental wanning and anthropogenic factors that impair fundament stability. Based on long-standing research, the Funda- mentstroyarkos Company (FSA) of Tyumen, Russia has developed four primary seasonally active cooling devices (SCDs) that maintain soil in the frozen state, which are now extensively used on oil and gas facilities located in cold regions of Russia. This paper reports on the testing and validation of these SCDs in experimental conditions. On this basis, desigqls and technologies for building bases and foundations on permafrost with use of soil thermal stabilization systems, using carbon dioxide as the heat-transfer agent, were developed.展开更多
The influence of two-stage isothermal treatment on the change in the linear dimensions of the fiber, the average sizes of the coherent scattering regions, the texture and phase composition of the polyacrylonitrile fib...The influence of two-stage isothermal treatment on the change in the linear dimensions of the fiber, the average sizes of the coherent scattering regions, the texture and phase composition of the polyacrylonitrile fiber in the process of isothermal thermal stabilization is considered by the methods of dilatometry and X-ray diffraction analysis. It is shown that preliminary short-term heat treatment at a lower temperature affects the process of structural transformations of the polyacrylonitrile fiber material and the formation of a new highly dispersed phase of the thermally stabilized fiber.展开更多
A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transitio...A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transition of lysozyme(PTL)molecules.The HMX decorated by PTL was characterized by SEM,XRD,FTIR and XPS,demonstrating a dense core-shell coating layer.The coverage of lysozyme on HMX crystal was calculated by the ratio of sulfur content.The surface coverage increased from 60.5% to 93.5% when the content of PTL was changed from 0.5 wt% to 2.0 wt%,indicating efficient coating.The thermal stability of HMX was investigated by in situ XRD and DSC.The thermal phase transition temperature of HMX(β to δ phase)was delayed by 42℃ with 2.0 wt% PTL coating,which prevented HMX from thermal damage and sensitivity by the effect of PTL coating.After heating at 215℃,large cracks appeared in the naked HMX crystal,while the PTL coated HMX still maintained intact,with the impact energy of HMX dropped dramatically from 5 J to 2 J.However,the impact energy of HMX with 1.0 wt% and 2.0 wt% coating content(HMX@PTL-1.0 and HMX@PTL-2.0)was unchanged(5 J).Present results potentially enable large-scale fabrication of polymorphic energetic materials with outstanding thermal stability by novel lysozyme coating.展开更多
The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricat...The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricated to address the above issues.The coordination complexes which consist of natural polyphenol tannic acid(TA) and Fe~Ⅲ were chosen to construct the inner shell,while the graphene sheets were used to build the outer shell.The resulting CL-20/TA-Fe~Ⅲ/graphene composites exhibited simultaneously improved thermal stability and safety performance with only 1 wt% double-shell content,which should be ascribed to the intense physical encapsulation effect from inner shell combined with the desensitization effect of carbon nano-materials from outer shell.The phase transition(ε to γ) temperature increased from 173.70 ℃ of pure CL-20 to 191.87℃ of CL-20/TA-Fe~Ⅲ/graphene composites.Meanwhile,the characteristic drop height(H_(50)) dramatically increased from 14.7 cm of pure CL-20 to112.8 cm of CL-20/TA-Fe~Ⅲ/graphene composites,indicating much superior safety performance after the construction of the double-shell structure.In general,this work has provided an effective and versatile strategy to conquer the thermal stability and safety issues of CL-20 and contributes to the future application of high energy density energetic materials.展开更多
To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders...To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders was fabricated by SLM.The pro-cessability,microstructure,and mechanical properties of the alloy were systematically investigated by density measurement,microstruc-ture characterization,and mechanical properties testing.The alloys fabricated at 250 W displayed higher relative densities due to a uni-formly smooth top surface and appropriate laser energy input.The maximum relative density value of the alloy reached(99.7±0.1)%,demonstrating good processability.The alloy exhibited a duplex grain microstructure consisting of columnar regions primarily and equiaxed regions with TiB_(2),Al6Mn,and Al3Er phases distributed along the grain boundaries.After directly aging treatment at a high tem-perature of 400℃,the strength of the SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy increased due to the precipitation of the secondary Al6Mn phases.The maximum yield strength and ultimate tensile strength of the aging alloy were measured to be(374±1)and(512±13)MPa,respectively.The SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy demonstrates exceptional strength and thermal stability due to the synergistic effects of the inhibition of grain growth,the incorporation of TiB_(2) nanoparticles,and the precipitation of secondary Al6Mn nanoparticles.展开更多
AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON an...AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON and antireflection layer AlMoO from bottom to top.The surface of the deposited coatings is flat without obvious defects.The absorptivity and emissivity are 0.896 and 0.09,respectively,and the quality factor is 9.96.After heat treatment at 500℃-36 h,the surface roughness of the coating increases,a small number of cracks and other defects appear,and the broken part is still attached to the coating surface.A certain degree of element diffusion occurs in the coatings,resulting in the decline of the optical properties of the coatings.The absorptivity and emissivity are 0.883 and 0.131,respectively,the quality factor is 7.06,and the PC value is 0.0335.The coatings do not fail under this condition and have certain thermal stability.展开更多
The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated ...The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated by using Fourier transform infrared spectroscopy,thermogravimetric analysis and UV-Vis spectroscopy.It was observed that incorporating natural melanin on TiO_(2) nanoparticles(TiO_(2)-Mel)occurred at 2.01 eV with a low value of Urbach energy around 100 meV indicating improvement in the crystalline structure.Magnetic measurement at room temperature showed diamagnetic behavior.Furthermore,thermal results showed that TiO_(2)-Mel is stable even at temperatures up to 400℃.According to the results obtained by the thermal stability of melanin with titanium dioxide,it can be a good candidate in many applications such as solar cells and optoelectronics.展开更多
A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low th...A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low thermal emittance(0.098),as well as excellent thermal stability with a selectivity of 0.900/0.07 even after annealing at 923 K for 400 h in Ar ambient.However,the multilayer coating failed after being subjected to annealing at 923 K for 400 h in an air environment,as indicated by a decrease in solar absorptance to 0.912 and an increase in thermal emittance to 0.634.The microstructure characterizations reveal that the annealed coating exhibits a columnar morphology along the vertical direction of the substrate.The presence of abundant grain boundaries in the multilayer coating promotes the outward diffusion of Cr and Mn atoms in the stainless-steel substrate.The Mn atoms,in particular,possess the capability to migrate towards the surface of the coating and undergo an oxidation reaction with oxygen,facilitating the formation of a thick Mn_(2)O_(3)layer.The roughness of the coating surface was significantly increased in this case,adversely affecting solar absorptance due to amplified sunlight reflection.In addition,the rocketing of thermal emittance is attributed to the destabilization of W infrared reflective layer during the annealing.These findings highlight the importance of considering the outward diffusion of Mn and Cr elements in the stainless-steel substrate when optimizing solar selective absorbers.展开更多
Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties.Among all types of cellulose materials available,cellulose nanofiber(CNF)has great potential to be u...Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties.Among all types of cellulose materials available,cellulose nanofiber(CNF)has great potential to be utilized in a diverse range of applications,including as a film material.In this study,CNF biocomposite film was prepared by using polyvinyl alcohol(PVA)as a matrix and Uncaria gambir extract as a filler.This study aims to investigate the effect of Uncaria gambir extract on the optical properties and thermal stability of the produced film.The formation of the CNF biocomposite films was confirmed using Fourier Transform Infrared Spectroscopy,their transmittance characteristics were measured using UV-Vis spectroscopy and a transmittance meter,while their reflectance was determined using a reflectance meter.The results revealed that the addition of Uncaria gambir extract to the CNF biocomposite film improved its UV-shielding properties,as indicated by the lower percentage of transmittance in the visible region,10%–70%.In addition,its reflectance increased to 10.6%compared to the CNF film without the addition of Uncaria gambir extract.Furthermore,the thermal stability of the CNF biocomposite film with the addition of Uncaria gambir extract improved to around 400℃–500℃.In conclusion,the results showed that CNF biocomposite film prepared by adding Uncaria gambir extract can be a promising candidate for optical and thermal management materials.展开更多
Phytosterol esters can effectively decrease serum cholesterol concentration in the human body and prevent cardio-cerebrovascular diseases.It was found that phytosterol esters exhibited better solubility and bioavailab...Phytosterol esters can effectively decrease serum cholesterol concentration in the human body and prevent cardio-cerebrovascular diseases.It was found that phytosterol esters exhibited better solubility and bioavailability than free phytosterols.In recent years,phytosterol esters have attracted increasing attention.However,during food processing,phytosterol esters are susceptible to degradation at high temperatures,resulting in certain losses and formation of potentially harmful substances for humans.This paper reviews the relevant literatures and updates on the thermal oxidation stability of phytosterol esters in recent years from the following aspects:(i)Sources,physiological activities,and applications of phytosterol esters;(ii)Oxidation mechanism of phytosterol esters;(iii)Effects of phytosterols species,the volume of addition,food matrix,heating temperature and time,and antioxidants on the thermal loss and oxidation stability of phytosterol esters.The research progress on the safety of phytosterol esters is also discussed in detail.Additionally,the prospects for future research are highlighted.展开更多
Semitransparent organic solar cells show attractive potential in the application of building-integrated photovoltaics,agrivoltaics,floating photovoltaics,and wearable electronics,as their multiple functionalities of e...Semitransparent organic solar cells show attractive potential in the application of building-integrated photovoltaics,agrivoltaics,floating photovoltaics,and wearable electronics,as their multiple functionalities of electric power generation,photopermeability,and color tunability.Design and exploration of semitransparent organic solar cells with optimal and balanced efficiency and average visible light transmittance and simultaneously high stability are in great demand.In this work,based on a layer-by-layer-processed active layer and an ultrathin metal electrode,inverted semitransparent organic solar cells(ITO/AZO/PM6/BTP-eC9/MoO_(3)/Au/Ag)were fabricated.Optimal and balanced efficiency and average visible light transmittance were demonstrated,and simultaneously promising thermal and light stability were achieved for the obtained devices.The power conversion efficiency of 13.78-12.29%and corresponding average visible light transmittance of 14.58-25.80%were recorded for the ST-OSC devices with 25-15 nm thick Ag electrodes,respectively.Superior thermal and light stability with~90%and~85%of initial efficiency retained in 400 h under 85°C thermal stress and AM1.5 solar illumination were demonstrated,respectively.展开更多
Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s d...Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool.展开更多
This research investigates the mechanical and thermal properties of Morus alba combined with polylactic acid in comparison with other natural fibers. The study uses three different fiber and PLA compositions - 20%, 30...This research investigates the mechanical and thermal properties of Morus alba combined with polylactic acid in comparison with other natural fibers. The study uses three different fiber and PLA compositions - 20%, 30%, and 40% respectively - to produce composite materials. In addition, another composite with the same fiber volume is treated with a 4% NaOH solution to improve mechanical properties. The composites are processed by twin-screw extrusion, granulation, and injection molding. Tensile strength measurements of raw fibers and NaOH-treated fibers were carried out using a single-fiber tensile test with a gauge length of 40 mm. It was observed that the NaOH surface treatment increases the resistance against tensile loading and exhibited improved properties for raw fiber strands. The diameter of the fibers was measured using optical microscopy. During this research, flexural tests, impact tests, differential scanning calorimetry (DSC), and heat deflection temperature measurements (HDT) were conducted to evaluate the mechanical and thermal properties of the developed composite samples. The results indicate that the mechanical properties of NaOH-treated Morus alba-reinforced polylactic acid outperform both virgin PLA samples and untreated Morus alba samples.展开更多
C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com...C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.展开更多
The thermal degradation of two synthetic lubricants base oils, poly-a-olefins (PAO) and di-esters (DE), was investigated under oxidative pyrolysis condition and their properties were characterized in simulated "a...The thermal degradation of two synthetic lubricants base oils, poly-a-olefins (PAO) and di-esters (DE), was investigated under oxidative pyrolysis condition and their properties were characterized in simulated "areo-engine" by comparing the thermal stability and identifying the products of thermal decomposition as a function of exposure temperature. The characterization of the products were performed by means of Fourier transform infrared spectrometry (FTIR), gas chromatography/mass spectrometry (GC/MS) and viscosity experiments. The results show that PAO has the lower thermal stability, being degraded at 200℃ different from 300 ℃ for DE. Several by-products are identified during the thermal degradation of two lubricant base oils. The majority of PAO products consist of alkenes and olefins, while more oxygen-contained organic compounds are detected in DE samples based on GC/MS analysis. The related reaction mechanisms are discussed based on the experimental results.展开更多
Thermal stability,crystallization behavior,Vickers hardness and magnetic properties of the Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) bulk metallic glasses were investigated.The Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) ...Thermal stability,crystallization behavior,Vickers hardness and magnetic properties of the Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) bulk metallic glasses were investigated.The Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) metallic glasses were fabricated by copper mold casting method.The thermal stability and crystallization behavior of the metallic glass rods were investigated by differential scanning calorimetry and isothermal experiments.Hardness measurements for samples annealed at different temperatures for different time were carried out at room temperature by the Vickers hardness tester,and magnetic measurements were performed at different temperatures by the vibrating sample magnetometer.It is shown that the addition of Ni does not play a positive role for enlarging ΔTx and GFA from parameter γ(=Tx/(Tg+Tl)),and it can,however,increase the activation energy in the initial stage of crystallization by changing the initial crystallization behavior.The minor addition of Ni can refine the crystal grain obtained from the full crystallization experiment.The primary crystallization causes the decrease of hardness in these alloys,and as the crystallization continues,the hardness in all samples increases instead due to the precipitation of carbide and boride.The annealing temperature has an obvious effect on magnetic properties of these alloys,and the minor addition of Ni can effectively prevent the alloy annealed at high temperature to transform from paramagnetic to ferromagnetic state.展开更多
Nanocrystalline nickel coating was prepared by flexible friction assisted electrodeposition technology in an additive-free Watts bath.The coating consists of massive equiaxial crystals with an average grain size of ab...Nanocrystalline nickel coating was prepared by flexible friction assisted electrodeposition technology in an additive-free Watts bath.The coating consists of massive equiaxial crystals with an average grain size of about 24 nm and exhibits a(111) preferred orientation.The differential scanning calorimetry(DSC) analysis of nanocrystalline nickel demonstrates that the peak temperature of rapid grain growth is about 285.4 °C,and the peak temperature of grain growth towards equilibrium is around 431.5 °C.The isochronous annealing results reveal that abnormal grain growth behavior is not observed in nanocrystalline nickel without sulfur-containing.The thermal stability of the deposition was improved due to its initial microstructure of the as-deposited nickel and a certain amount of annealing nano-twins with low-energy,which reduces the driving force for grain growth.Consequently,the coating shows a low residual tensile stress of about 50 MPa and a high microhardness of HV 400 at the annealing temperature of 450 °C.展开更多
The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase t...The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase transformation kinetic information was obtained by adopting lever rule from the recorded dilatometric curves. The results show that an inverse stabilization, featured by the damage of "the atmosphere of carbon atoms" and the increase of the starting temperature for martensite transformation takes place when the T91 ferritic steel is isothermally treated above the Ms point, and it becomes strong with increasing the holding time. While the continued temperature for martensite transformation decreases gradually when isothermally holding at a temperature below Ms point. The observed inverse stabilization behavior could be attributed to the relatively high temperature of Ms point in the explored T91 ferritic heat-resistant steel.展开更多
We study the stabilization of the soliton transported bio-energy by the dynamic equations in the improved Davydov theory from four aspects containing the feature of free motion and states of the soliton at the long-ti...We study the stabilization of the soliton transported bio-energy by the dynamic equations in the improved Davydov theory from four aspects containing the feature of free motion and states of the soliton at the long-time motion and at biological temperature 300 K and behaviors of collision of the solitons by Runge–Kutta method and physical parameter values appropriate to the α-helix protein molecules. We prove that the new solitons can move without dispersion at a constant speed retaining its shape and energy in free and long-time motions and can go through each other without scattering. If considering further influence of the temperature effect of heat bath on the soliton, it is still thermally stable at biological temperature 300 K and in a time as long as 300 ps and amino acid spacings as large as 400, which shows that the lifetime of the new soliton is at least 300 ps, which is consistent with analytic result obtained by quantum perturbation theory. These results exhibit that the new soliton is a possible carrier of bio-energy transport and the improved model is possibly a candidate for the mechanism of this transport.展开更多
Microstructure instabilities of the fully lamellar Ti-45Al-8.5Nb-(W,B,Y) alloy were investigated by SEM and TEM after long-term thermal cycling(500 and 1000 thermal cycles) at 900 °C. Two major categories of ...Microstructure instabilities of the fully lamellar Ti-45Al-8.5Nb-(W,B,Y) alloy were investigated by SEM and TEM after long-term thermal cycling(500 and 1000 thermal cycles) at 900 °C. Two major categories of microstructure instability were produced in the alloy after the thermal cycling: 1) The discontinuous coarsening implies that grain boundary migrations are inclined to occur in the Al-segregation region after the long-term thermal cycling, especially after 1000 thermal cycles. Al-segregation can be reduced during the process of long-term thermal cycling as a result of element diffusion; 2) The α2 lamellae become thinner and are broken after 1000 thermal cycles caused by the dissolution of α2 lamellae through phase transformation of α2→γ. The γ grains nucleate within the α2 lamellae or(α2+γ) lamellae in a random direction.展开更多
文摘This paper describes new building construction methods that utilize soil thermal stabilization reghnes to compensate for negative environmental wanning and anthropogenic factors that impair fundament stability. Based on long-standing research, the Funda- mentstroyarkos Company (FSA) of Tyumen, Russia has developed four primary seasonally active cooling devices (SCDs) that maintain soil in the frozen state, which are now extensively used on oil and gas facilities located in cold regions of Russia. This paper reports on the testing and validation of these SCDs in experimental conditions. On this basis, desigqls and technologies for building bases and foundations on permafrost with use of soil thermal stabilization systems, using carbon dioxide as the heat-transfer agent, were developed.
文摘The influence of two-stage isothermal treatment on the change in the linear dimensions of the fiber, the average sizes of the coherent scattering regions, the texture and phase composition of the polyacrylonitrile fiber in the process of isothermal thermal stabilization is considered by the methods of dilatometry and X-ray diffraction analysis. It is shown that preliminary short-term heat treatment at a lower temperature affects the process of structural transformations of the polyacrylonitrile fiber material and the formation of a new highly dispersed phase of the thermally stabilized fiber.
基金the China National Nature Science Foundation(Grant No.12102404)。
文摘A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transition of lysozyme(PTL)molecules.The HMX decorated by PTL was characterized by SEM,XRD,FTIR and XPS,demonstrating a dense core-shell coating layer.The coverage of lysozyme on HMX crystal was calculated by the ratio of sulfur content.The surface coverage increased from 60.5% to 93.5% when the content of PTL was changed from 0.5 wt% to 2.0 wt%,indicating efficient coating.The thermal stability of HMX was investigated by in situ XRD and DSC.The thermal phase transition temperature of HMX(β to δ phase)was delayed by 42℃ with 2.0 wt% PTL coating,which prevented HMX from thermal damage and sensitivity by the effect of PTL coating.After heating at 215℃,large cracks appeared in the naked HMX crystal,while the PTL coated HMX still maintained intact,with the impact energy of HMX dropped dramatically from 5 J to 2 J.However,the impact energy of HMX with 1.0 wt% and 2.0 wt% coating content(HMX@PTL-1.0 and HMX@PTL-2.0)was unchanged(5 J).Present results potentially enable large-scale fabrication of polymorphic energetic materials with outstanding thermal stability by novel lysozyme coating.
基金financially supported by the National Natural Science Foundation of China (Grant No. 22275173)the Open Project of State Key Laboratory of Environment-friendly Energy Materials (Grant No. 22kfhg10)。
文摘The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricated to address the above issues.The coordination complexes which consist of natural polyphenol tannic acid(TA) and Fe~Ⅲ were chosen to construct the inner shell,while the graphene sheets were used to build the outer shell.The resulting CL-20/TA-Fe~Ⅲ/graphene composites exhibited simultaneously improved thermal stability and safety performance with only 1 wt% double-shell content,which should be ascribed to the intense physical encapsulation effect from inner shell combined with the desensitization effect of carbon nano-materials from outer shell.The phase transition(ε to γ) temperature increased from 173.70 ℃ of pure CL-20 to 191.87℃ of CL-20/TA-Fe~Ⅲ/graphene composites.Meanwhile,the characteristic drop height(H_(50)) dramatically increased from 14.7 cm of pure CL-20 to112.8 cm of CL-20/TA-Fe~Ⅲ/graphene composites,indicating much superior safety performance after the construction of the double-shell structure.In general,this work has provided an effective and versatile strategy to conquer the thermal stability and safety issues of CL-20 and contributes to the future application of high energy density energetic materials.
基金supported by the National Natural Science Foundation of China(Nos.51801079 and 52001140)the Portugal National Funds through Fundação para a Ciência e a Tecnologia Project(No.2021.04115).
文摘To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders was fabricated by SLM.The pro-cessability,microstructure,and mechanical properties of the alloy were systematically investigated by density measurement,microstruc-ture characterization,and mechanical properties testing.The alloys fabricated at 250 W displayed higher relative densities due to a uni-formly smooth top surface and appropriate laser energy input.The maximum relative density value of the alloy reached(99.7±0.1)%,demonstrating good processability.The alloy exhibited a duplex grain microstructure consisting of columnar regions primarily and equiaxed regions with TiB_(2),Al6Mn,and Al3Er phases distributed along the grain boundaries.After directly aging treatment at a high tem-perature of 400℃,the strength of the SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy increased due to the precipitation of the secondary Al6Mn phases.The maximum yield strength and ultimate tensile strength of the aging alloy were measured to be(374±1)and(512±13)MPa,respectively.The SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy demonstrates exceptional strength and thermal stability due to the synergistic effects of the inhibition of grain growth,the incorporation of TiB_(2) nanoparticles,and the precipitation of secondary Al6Mn nanoparticles.
基金Funded by the National Natural Science Foundation of China(No.52002159)the Open Foundation of Hubei Provincial Key Laboratory of Green Materials for Light Industry(No.201611B12)the Open Fund of Science and Technology on Thermal Energy and Power Laboratory(No.TPL2018A03)。
文摘AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON and antireflection layer AlMoO from bottom to top.The surface of the deposited coatings is flat without obvious defects.The absorptivity and emissivity are 0.896 and 0.09,respectively,and the quality factor is 9.96.After heat treatment at 500℃-36 h,the surface roughness of the coating increases,a small number of cracks and other defects appear,and the broken part is still attached to the coating surface.A certain degree of element diffusion occurs in the coatings,resulting in the decline of the optical properties of the coatings.The absorptivity and emissivity are 0.883 and 0.131,respectively,the quality factor is 7.06,and the PC value is 0.0335.The coatings do not fail under this condition and have certain thermal stability.
基金Funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(No.RG-21-09-53)。
文摘The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated by using Fourier transform infrared spectroscopy,thermogravimetric analysis and UV-Vis spectroscopy.It was observed that incorporating natural melanin on TiO_(2) nanoparticles(TiO_(2)-Mel)occurred at 2.01 eV with a low value of Urbach energy around 100 meV indicating improvement in the crystalline structure.Magnetic measurement at room temperature showed diamagnetic behavior.Furthermore,thermal results showed that TiO_(2)-Mel is stable even at temperatures up to 400℃.According to the results obtained by the thermal stability of melanin with titanium dioxide,it can be a good candidate in many applications such as solar cells and optoelectronics.
基金Funded by the Natural Science Foundation of Shanxi Province of China(Nos.202303021221177 and 202103021224063)the National Natural Science Foundation of China(No.52002159)。
文摘A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low thermal emittance(0.098),as well as excellent thermal stability with a selectivity of 0.900/0.07 even after annealing at 923 K for 400 h in Ar ambient.However,the multilayer coating failed after being subjected to annealing at 923 K for 400 h in an air environment,as indicated by a decrease in solar absorptance to 0.912 and an increase in thermal emittance to 0.634.The microstructure characterizations reveal that the annealed coating exhibits a columnar morphology along the vertical direction of the substrate.The presence of abundant grain boundaries in the multilayer coating promotes the outward diffusion of Cr and Mn atoms in the stainless-steel substrate.The Mn atoms,in particular,possess the capability to migrate towards the surface of the coating and undergo an oxidation reaction with oxygen,facilitating the formation of a thick Mn_(2)O_(3)layer.The roughness of the coating surface was significantly increased in this case,adversely affecting solar absorptance due to amplified sunlight reflection.In addition,the rocketing of thermal emittance is attributed to the destabilization of W infrared reflective layer during the annealing.These findings highlight the importance of considering the outward diffusion of Mn and Cr elements in the stainless-steel substrate when optimizing solar selective absorbers.
基金funded by the Institute for Research and Community Service(LPPM)Universitas Negeri Padang,Indonesia,with a Contract Number:1529/UN35.15/LT/2023.
文摘Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties.Among all types of cellulose materials available,cellulose nanofiber(CNF)has great potential to be utilized in a diverse range of applications,including as a film material.In this study,CNF biocomposite film was prepared by using polyvinyl alcohol(PVA)as a matrix and Uncaria gambir extract as a filler.This study aims to investigate the effect of Uncaria gambir extract on the optical properties and thermal stability of the produced film.The formation of the CNF biocomposite films was confirmed using Fourier Transform Infrared Spectroscopy,their transmittance characteristics were measured using UV-Vis spectroscopy and a transmittance meter,while their reflectance was determined using a reflectance meter.The results revealed that the addition of Uncaria gambir extract to the CNF biocomposite film improved its UV-shielding properties,as indicated by the lower percentage of transmittance in the visible region,10%–70%.In addition,its reflectance increased to 10.6%compared to the CNF film without the addition of Uncaria gambir extract.Furthermore,the thermal stability of the CNF biocomposite film with the addition of Uncaria gambir extract improved to around 400℃–500℃.In conclusion,the results showed that CNF biocomposite film prepared by adding Uncaria gambir extract can be a promising candidate for optical and thermal management materials.
基金The authors sincerely acknowledge the financial support from the basic research project of the key scientific research projects of colleges and universities in Henan Province(21zx010).
文摘Phytosterol esters can effectively decrease serum cholesterol concentration in the human body and prevent cardio-cerebrovascular diseases.It was found that phytosterol esters exhibited better solubility and bioavailability than free phytosterols.In recent years,phytosterol esters have attracted increasing attention.However,during food processing,phytosterol esters are susceptible to degradation at high temperatures,resulting in certain losses and formation of potentially harmful substances for humans.This paper reviews the relevant literatures and updates on the thermal oxidation stability of phytosterol esters in recent years from the following aspects:(i)Sources,physiological activities,and applications of phytosterol esters;(ii)Oxidation mechanism of phytosterol esters;(iii)Effects of phytosterols species,the volume of addition,food matrix,heating temperature and time,and antioxidants on the thermal loss and oxidation stability of phytosterol esters.The research progress on the safety of phytosterol esters is also discussed in detail.Additionally,the prospects for future research are highlighted.
基金the financial support from Ningbo Science and Technology Project(2022-DST-004)Ningbo key scientific and technological project(2022Z117)+2 种基金Ningbo Nature Science Foundation(2023J039,202003N4176)Zhejiang Provincial Natural Science Foundation of China(LY23F040004)the financial support by the State Key Lab of Luminescent Materials and Devices,South China University of Technology
文摘Semitransparent organic solar cells show attractive potential in the application of building-integrated photovoltaics,agrivoltaics,floating photovoltaics,and wearable electronics,as their multiple functionalities of electric power generation,photopermeability,and color tunability.Design and exploration of semitransparent organic solar cells with optimal and balanced efficiency and average visible light transmittance and simultaneously high stability are in great demand.In this work,based on a layer-by-layer-processed active layer and an ultrathin metal electrode,inverted semitransparent organic solar cells(ITO/AZO/PM6/BTP-eC9/MoO_(3)/Au/Ag)were fabricated.Optimal and balanced efficiency and average visible light transmittance were demonstrated,and simultaneously promising thermal and light stability were achieved for the obtained devices.The power conversion efficiency of 13.78-12.29%and corresponding average visible light transmittance of 14.58-25.80%were recorded for the ST-OSC devices with 25-15 nm thick Ag electrodes,respectively.Superior thermal and light stability with~90%and~85%of initial efficiency retained in 400 h under 85°C thermal stress and AM1.5 solar illumination were demonstrated,respectively.
文摘Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool.
文摘This research investigates the mechanical and thermal properties of Morus alba combined with polylactic acid in comparison with other natural fibers. The study uses three different fiber and PLA compositions - 20%, 30%, and 40% respectively - to produce composite materials. In addition, another composite with the same fiber volume is treated with a 4% NaOH solution to improve mechanical properties. The composites are processed by twin-screw extrusion, granulation, and injection molding. Tensile strength measurements of raw fibers and NaOH-treated fibers were carried out using a single-fiber tensile test with a gauge length of 40 mm. It was observed that the NaOH surface treatment increases the resistance against tensile loading and exhibited improved properties for raw fiber strands. The diameter of the fibers was measured using optical microscopy. During this research, flexural tests, impact tests, differential scanning calorimetry (DSC), and heat deflection temperature measurements (HDT) were conducted to evaluate the mechanical and thermal properties of the developed composite samples. The results indicate that the mechanical properties of NaOH-treated Morus alba-reinforced polylactic acid outperform both virgin PLA samples and untreated Morus alba samples.
基金Projects(51201134,51271147)supported by the National Natural Science Foundation of ChinaProject(2015JM5181)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central Universities,China
文摘C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.
基金Supported by the Fund from the Air Force Armament Department of China for Innovative Research Group(Grant KJ2012283)
文摘The thermal degradation of two synthetic lubricants base oils, poly-a-olefins (PAO) and di-esters (DE), was investigated under oxidative pyrolysis condition and their properties were characterized in simulated "areo-engine" by comparing the thermal stability and identifying the products of thermal decomposition as a function of exposure temperature. The characterization of the products were performed by means of Fourier transform infrared spectrometry (FTIR), gas chromatography/mass spectrometry (GC/MS) and viscosity experiments. The results show that PAO has the lower thermal stability, being degraded at 200℃ different from 300 ℃ for DE. Several by-products are identified during the thermal degradation of two lubricant base oils. The majority of PAO products consist of alkenes and olefins, while more oxygen-contained organic compounds are detected in DE samples based on GC/MS analysis. The related reaction mechanisms are discussed based on the experimental results.
基金Project(2012CB825700) supported by the National Basic Research Program of China
文摘Thermal stability,crystallization behavior,Vickers hardness and magnetic properties of the Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) bulk metallic glasses were investigated.The Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) metallic glasses were fabricated by copper mold casting method.The thermal stability and crystallization behavior of the metallic glass rods were investigated by differential scanning calorimetry and isothermal experiments.Hardness measurements for samples annealed at different temperatures for different time were carried out at room temperature by the Vickers hardness tester,and magnetic measurements were performed at different temperatures by the vibrating sample magnetometer.It is shown that the addition of Ni does not play a positive role for enlarging ΔTx and GFA from parameter γ(=Tx/(Tg+Tl)),and it can,however,increase the activation energy in the initial stage of crystallization by changing the initial crystallization behavior.The minor addition of Ni can refine the crystal grain obtained from the full crystallization experiment.The primary crystallization causes the decrease of hardness in these alloys,and as the crystallization continues,the hardness in all samples increases instead due to the precipitation of carbide and boride.The annealing temperature has an obvious effect on magnetic properties of these alloys,and the minor addition of Ni can effectively prevent the alloy annealed at high temperature to transform from paramagnetic to ferromagnetic state.
基金Project(51005244)supported by the National Natural Science Foundation of ChinaProject(2011CB013405)supported by the Basic Research Development Program of China
文摘Nanocrystalline nickel coating was prepared by flexible friction assisted electrodeposition technology in an additive-free Watts bath.The coating consists of massive equiaxial crystals with an average grain size of about 24 nm and exhibits a(111) preferred orientation.The differential scanning calorimetry(DSC) analysis of nanocrystalline nickel demonstrates that the peak temperature of rapid grain growth is about 285.4 °C,and the peak temperature of grain growth towards equilibrium is around 431.5 °C.The isochronous annealing results reveal that abnormal grain growth behavior is not observed in nanocrystalline nickel without sulfur-containing.The thermal stability of the deposition was improved due to its initial microstructure of the as-deposited nickel and a certain amount of annealing nano-twins with low-energy,which reduces the driving force for grain growth.Consequently,the coating shows a low residual tensile stress of about 50 MPa and a high microhardness of HV 400 at the annealing temperature of 450 °C.
基金the National Natural Science Foundation of China(No.50401003)the Foundation for the Author of National Excellent Doctoral Dissertation of China(FANEDD)of China(No.200335)+1 种基金the Natural Science Foundation of Tianjin City(No.033608811)the Fok Ying Tong Education Foundation,and the Program for New Century Excellent Talents in University for grant and financial support.
文摘The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase transformation kinetic information was obtained by adopting lever rule from the recorded dilatometric curves. The results show that an inverse stabilization, featured by the damage of "the atmosphere of carbon atoms" and the increase of the starting temperature for martensite transformation takes place when the T91 ferritic steel is isothermally treated above the Ms point, and it becomes strong with increasing the holding time. While the continued temperature for martensite transformation decreases gradually when isothermally holding at a temperature below Ms point. The observed inverse stabilization behavior could be attributed to the relatively high temperature of Ms point in the explored T91 ferritic heat-resistant steel.
基金The project supported by National Natural Science Foundation of China under Grant No.19974034
文摘We study the stabilization of the soliton transported bio-energy by the dynamic equations in the improved Davydov theory from four aspects containing the feature of free motion and states of the soliton at the long-time motion and at biological temperature 300 K and behaviors of collision of the solitons by Runge–Kutta method and physical parameter values appropriate to the α-helix protein molecules. We prove that the new solitons can move without dispersion at a constant speed retaining its shape and energy in free and long-time motions and can go through each other without scattering. If considering further influence of the temperature effect of heat bath on the soliton, it is still thermally stable at biological temperature 300 K and in a time as long as 300 ps and amino acid spacings as large as 400, which shows that the lifetime of the new soliton is at least 300 ps, which is consistent with analytic result obtained by quantum perturbation theory. These results exhibit that the new soliton is a possible carrier of bio-energy transport and the improved model is possibly a candidate for the mechanism of this transport.
基金Project(2011CB605500)supported by National Basic Research Program of ChinaProject(51171015)supported by National Natural Science Foundation of China+2 种基金Project(2012M520166)supported by China Postdoctoral Science FoundationProject(2012Z-06)supported by State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,ChinaProject(FRF-TP-12-164A)supported by Fundamental Research Funds for the Central Universities of China
文摘Microstructure instabilities of the fully lamellar Ti-45Al-8.5Nb-(W,B,Y) alloy were investigated by SEM and TEM after long-term thermal cycling(500 and 1000 thermal cycles) at 900 °C. Two major categories of microstructure instability were produced in the alloy after the thermal cycling: 1) The discontinuous coarsening implies that grain boundary migrations are inclined to occur in the Al-segregation region after the long-term thermal cycling, especially after 1000 thermal cycles. Al-segregation can be reduced during the process of long-term thermal cycling as a result of element diffusion; 2) The α2 lamellae become thinner and are broken after 1000 thermal cycles caused by the dissolution of α2 lamellae through phase transformation of α2→γ. The γ grains nucleate within the α2 lamellae or(α2+γ) lamellae in a random direction.