This article deals with the study of the viscoelastic and thermal properties of polyurethane (PU) rigid foamsfrom biobased and recycled components. Rapeseed oil (RO) and recycled poly(ethylene terephthalate)(PET) were...This article deals with the study of the viscoelastic and thermal properties of polyurethane (PU) rigid foamsfrom biobased and recycled components. Rapeseed oil (RO) and recycled poly(ethylene terephthalate)(PET) were used to synthesize PU polyols. Addition of adipic acid (ADA) to polyol resulted in improvedthermal and viscoelastic properties of foam materials. ADA content was varied from 1 to 6 wt%. Results ofthe dynamic mechanical spectra indicate an increase of the storage modulus E′ and the loss modulus E″ inthe whole temperature range for specimens with higher loading of ADA. In addition, damping factor shiftedto higher temperatures, but damping intensity remained almost unaffected by the compositions. Scanningelectron microscopy of the foams’ cross sections testified that the average cells’ size of 110 mm was unaffectedby the ADA content in polyol.展开更多
Using ethanol or acetone as the working fluid, the performance of starting up and heat transfer of closed-loop plate oscillating heat pipe with parallel channels(POHP-PC) were experimentally investigated by varying fi...Using ethanol or acetone as the working fluid, the performance of starting up and heat transfer of closed-loop plate oscillating heat pipe with parallel channels(POHP-PC) were experimentally investigated by varying filling ratio, inclination, working fluids and heating power. The performance of the tested pulsating heat pipe was mainly evaluated by thermal resistance and wall temperature. Heating copper block and cold water bath were adopted in the experimental investigations. It was found that oscillating heat pipe with filling ratio of 50% started up earlier than that with 70% when heating input was 159.4 W, however, it has similar starting up performance with filling ratio of 50% as compared to 70% on the condition of heat input of 205.4 W. And heat pipe with filling ratio of 10% could not start up but directly transit to dry burning. A reasonable filling ratio range of 35%-70% was needed in order to achieve better performance, and there are different optimal filling ratios with different heating inputs- the more heating input, the higher optimal filling ratio, and vice versa. However, the dry burning appeared easily with low filling ratio, especially at very low filling ratio, such as 10%. And higher filling ratio, such as 70%, resulted in higher heat transfer( dry burning) limit. With filling ratio of 70% and inclination of 75°, oscillating heat pipe with acetone started up with heating input of just 24 W, but for ethanol, it needed to be achieved 68 W, Furthermore, the start time with acetone was similar as compared to that with ethanol. For steady operating state, the heating input with acetone was about 80 W, but it transited to dry burning state when heating input was greater than 160 W. However, for ethanol, the heating input was in vicinity of 160 W. Furthermore, thermal resistance with acetone was lower than that with ethanol at the same heating input of 120 W.展开更多
The main aim of this research is to investigate the effect of salt concentration on the dielectric properties (AC (CrAC), permittivity (d), dielectric loss (d'), and dielectric relaxation process) and melting...The main aim of this research is to investigate the effect of salt concentration on the dielectric properties (AC (CrAC), permittivity (d), dielectric loss (d'), and dielectric relaxation process) and melting behavior of polyethylene oxide (PEO)/CdC12 complexes. The dielectric study was carried out over a frequency range 10-335 kHz and a temperature range 25--45~C. The AC conductivity, permittivity and dielectric loss of the PEO/CdC12 complexes increase with increasing salt concentration and temperature. Also, it was found that the addition of CdC12 salt to PEO host reduced the melting temperature of PEO host. Dielectric results reveal that the relaxation process of these complexes is due to viscoelastic relaxation or non-Debye relaxation at room temperature. Additionally, it was found that relaxation behavior remained viscoelastic at different temperatures and salt concentrations.展开更多
First-principles calculations of the structural, optical, and thermal properties of Cr2AlB2 are performed using the pseudopotential plane-wave method within the generalized gradient approximation (GGA). Calculation ...First-principles calculations of the structural, optical, and thermal properties of Cr2AlB2 are performed using the pseudopotential plane-wave method within the generalized gradient approximation (GGA). Calculation of the elastic constant and phonon dispersion indicates that Cr2AlB2 is mechanically and thermodynamically stable. Analysis of the band structure and density of states indicates that Cr2AlB2 is metallic. The thermal properties under increasing temperature and pressure are investigated using the quasi-harmonic Debye model. The results show that anharmonic effects on Cr^AlB~ are important at low temperature and high pressure. The calculated equilibrium primitive cell volume is 95.91 ~3 at T = 300 K, P - 0 GPa. The ability of Cr2AlB2 to resist volume changes becomes weaker with increasing temperature and stronger with increasing pressure. Analysis of optical properties of Cr2AlB2 shows that the static dielectric function of Cr2AlB2 is 53.1, and the refractive index no is 7.3. If the incident light has a frequency exceeding 16.09 eV, which is the plasma frequency of Cr2AlB2, Cr2AlB2 changes from metallic to dielectric material.展开更多
文摘This article deals with the study of the viscoelastic and thermal properties of polyurethane (PU) rigid foamsfrom biobased and recycled components. Rapeseed oil (RO) and recycled poly(ethylene terephthalate)(PET) were used to synthesize PU polyols. Addition of adipic acid (ADA) to polyol resulted in improvedthermal and viscoelastic properties of foam materials. ADA content was varied from 1 to 6 wt%. Results ofthe dynamic mechanical spectra indicate an increase of the storage modulus E′ and the loss modulus E″ inthe whole temperature range for specimens with higher loading of ADA. In addition, damping factor shiftedto higher temperatures, but damping intensity remained almost unaffected by the compositions. Scanningelectron microscopy of the foams’ cross sections testified that the average cells’ size of 110 mm was unaffectedby the ADA content in polyol.
基金Project 51306198 supported by National Natural Science Foundation of ChinaProject 00921915023 supported by Organization Department of Beijing+1 种基金Project NR2013K07 supported by Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning EngineeringProject 331614013 supported by Beijing University of Civil Engineering and Architecture
文摘Using ethanol or acetone as the working fluid, the performance of starting up and heat transfer of closed-loop plate oscillating heat pipe with parallel channels(POHP-PC) were experimentally investigated by varying filling ratio, inclination, working fluids and heating power. The performance of the tested pulsating heat pipe was mainly evaluated by thermal resistance and wall temperature. Heating copper block and cold water bath were adopted in the experimental investigations. It was found that oscillating heat pipe with filling ratio of 50% started up earlier than that with 70% when heating input was 159.4 W, however, it has similar starting up performance with filling ratio of 50% as compared to 70% on the condition of heat input of 205.4 W. And heat pipe with filling ratio of 10% could not start up but directly transit to dry burning. A reasonable filling ratio range of 35%-70% was needed in order to achieve better performance, and there are different optimal filling ratios with different heating inputs- the more heating input, the higher optimal filling ratio, and vice versa. However, the dry burning appeared easily with low filling ratio, especially at very low filling ratio, such as 10%. And higher filling ratio, such as 70%, resulted in higher heat transfer( dry burning) limit. With filling ratio of 70% and inclination of 75°, oscillating heat pipe with acetone started up with heating input of just 24 W, but for ethanol, it needed to be achieved 68 W, Furthermore, the start time with acetone was similar as compared to that with ethanol. For steady operating state, the heating input with acetone was about 80 W, but it transited to dry burning state when heating input was greater than 160 W. However, for ethanol, the heating input was in vicinity of 160 W. Furthermore, thermal resistance with acetone was lower than that with ethanol at the same heating input of 120 W.
文摘The main aim of this research is to investigate the effect of salt concentration on the dielectric properties (AC (CrAC), permittivity (d), dielectric loss (d'), and dielectric relaxation process) and melting behavior of polyethylene oxide (PEO)/CdC12 complexes. The dielectric study was carried out over a frequency range 10-335 kHz and a temperature range 25--45~C. The AC conductivity, permittivity and dielectric loss of the PEO/CdC12 complexes increase with increasing salt concentration and temperature. Also, it was found that the addition of CdC12 salt to PEO host reduced the melting temperature of PEO host. Dielectric results reveal that the relaxation process of these complexes is due to viscoelastic relaxation or non-Debye relaxation at room temperature. Additionally, it was found that relaxation behavior remained viscoelastic at different temperatures and salt concentrations.
基金This work was supported by the National Natural Science Foundation of China (Grant No. U1304111), the Program for Science & Technology Innovation Talents in Universi- ties of Henan Province (Grant No. 14HASTIT039), and the Inno-vation Team of Henan University of Science and Technology (Grant No. 2015XTD001).
文摘First-principles calculations of the structural, optical, and thermal properties of Cr2AlB2 are performed using the pseudopotential plane-wave method within the generalized gradient approximation (GGA). Calculation of the elastic constant and phonon dispersion indicates that Cr2AlB2 is mechanically and thermodynamically stable. Analysis of the band structure and density of states indicates that Cr2AlB2 is metallic. The thermal properties under increasing temperature and pressure are investigated using the quasi-harmonic Debye model. The results show that anharmonic effects on Cr^AlB~ are important at low temperature and high pressure. The calculated equilibrium primitive cell volume is 95.91 ~3 at T = 300 K, P - 0 GPa. The ability of Cr2AlB2 to resist volume changes becomes weaker with increasing temperature and stronger with increasing pressure. Analysis of optical properties of Cr2AlB2 shows that the static dielectric function of Cr2AlB2 is 53.1, and the refractive index no is 7.3. If the incident light has a frequency exceeding 16.09 eV, which is the plasma frequency of Cr2AlB2, Cr2AlB2 changes from metallic to dielectric material.