Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern...Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.展开更多
An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of min...An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass.展开更多
The influence of thermal damage on macroscopic and microscopic characteristics of different rocks has received much attention in the field of rock engineering.When the rocks are subjected to thermal treatment,the chan...The influence of thermal damage on macroscopic and microscopic characteristics of different rocks has received much attention in the field of rock engineering.When the rocks are subjected to thermal treatment,the change of macroscopic characteristics and evolution of micro-structure would be induced,ultimately resulting in different degrees of thermal damage in rocks.To better understand the thermal damage mechanism of different rocks and its effect on the rock performance,this study reviews a large number of test results of rock specimens experiencing heating and cooling treatment in the laboratory.Firstly,the variations of macroscopic behaviors,including physical parameters,mechanical parameters,thermal conductivity and permeability,are examined.The variations of mechanical parameters with thermal treatment variables(i.e.temperature or the number of thermal cycles)are divided into four types.Secondly,several measuring methods for microstructure,such as polarizing microscopy,fluorescent method,scanning electron microscopy(SEM),X-ray computerized tomography(CT),acoustic emission(AE)and ultrasonic technique,are introduced.Furthermore,the effect of thermal damage on the mechanical parameters of rocks in response to different thermal treatments,involving temperature magnitude,cooling method and thermal cycle,are discussed.Finally,the limitations and prospects for the research of rock thermal damage are proposed.展开更多
Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with te...Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.展开更多
To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders...To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders was fabricated by SLM.The pro-cessability,microstructure,and mechanical properties of the alloy were systematically investigated by density measurement,microstruc-ture characterization,and mechanical properties testing.The alloys fabricated at 250 W displayed higher relative densities due to a uni-formly smooth top surface and appropriate laser energy input.The maximum relative density value of the alloy reached(99.7±0.1)%,demonstrating good processability.The alloy exhibited a duplex grain microstructure consisting of columnar regions primarily and equiaxed regions with TiB_(2),Al6Mn,and Al3Er phases distributed along the grain boundaries.After directly aging treatment at a high tem-perature of 400℃,the strength of the SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy increased due to the precipitation of the secondary Al6Mn phases.The maximum yield strength and ultimate tensile strength of the aging alloy were measured to be(374±1)and(512±13)MPa,respectively.The SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy demonstrates exceptional strength and thermal stability due to the synergistic effects of the inhibition of grain growth,the incorporation of TiB_(2) nanoparticles,and the precipitation of secondary Al6Mn nanoparticles.展开更多
Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,...Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,and ultraviolet(UV)-induced aging problems pose significant constraints on their potential applications.Here,an ultra-elas-tic,highly breathable,and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals.Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles(NPs),an interwoven thermal con-ducting fiber network(0.72 W m^(-1) K^(-1))is constructed benefiting from the seamless thermal interfaces,facilitating unimpeded heat dissipation for comfort skin wearing.More excitingly,the elastomeric fiber substrates simultaneously achieve outstanding UV protection(UPF=143.1)and EMI shielding(SET>65,X-band)capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs.Furthermore,an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor,which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference.This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation.展开更多
The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with t...The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs.展开更多
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo...The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.展开更多
In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samp...In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samples after thermal treatment at 25,200,400,and 600℃.Results show that the dynamic peak splitting strength of thermally damaged granite samples increases with increasing strain rate,showing obvious strain‐rate sensitivity.With increasing temperature,thermally induced cracks in granite transform from intergranular cracks to intragranular cracks,and to a transgranular crack network.Thermally induced damages reduce the dynamic peak splitting strength and the maximum absorbed energy while increasing the peak radial strain.The fracture mode of the thermally damaged granite under dynamic loads is mode Ⅱ splitting failure.By using the axial roughness index Z2 a,the distribution ranges of the wedge‐shaped failure zones and the tensile failure zones in the fracture surfaces under dynamic Brazilian splitting can be effectively identified.The radial roughness index Z_(2)^(r)is sensitive to the strain rate and temperature.It shows a linear correlation with the peak splitting strength and the maximum absorbed energy and a linear negative correlation with the peak radial strain.Z_(2)^(r)can be used to quantitatively estimate the dynamic parameters based on the models proposed.展开更多
The objective of this study is to investigate the factors that contribute to brittleness and to identify strategies for mitigating these factors in populations with varying degrees of thermal vulnerability,based on th...The objective of this study is to investigate the factors that contribute to brittleness and to identify strategies for mitigating these factors in populations with varying degrees of thermal vulnerability,based on the potential impact of extreme heat exposure on human survival and habitability.The physiological condition of lower adaptability to high temperature environments and the assessment of individuals who may have higher tolerance time in high temperature environments based on spatial perspectives suggest the need for targeted spatial optimization strategies for commuters and disadvantaged populations.This is demonstrated through a case study.These optimization measures encompass a variety of aspects,including the integration of transportation systems,the expansion of grey space corridors,the improvement of green space layout,and the implantation of green infrastructure.The study aims to reduce the exposure time of thermally vulnerable individuals to high temperature environments through spatial optimization strategies,to enhance the resilience of urban green spaces to heat stress,and to reduce the probability of heat-wave occurrence.展开更多
Aggregation-induced thermally activated delayed fluorescence(TADF)phenomena have attracted extensive attention recently.In this paper,several theoretical models including monomer,dimer,and complex are used for the exp...Aggregation-induced thermally activated delayed fluorescence(TADF)phenomena have attracted extensive attention recently.In this paper,several theoretical models including monomer,dimer,and complex are used for the explanation of the luminescent properties of(R)-5-(9H-carbazol-9-yl)-2-(1,2,3,4-tetrahydronaphthalen-1-yl)isoindoline-1,3-dione((R)-ImNCz),which was recently reported[Chemical Engineering Journal 418129167(2021)].The polarizable continuum model(PCM)and the combined quantum mechanics and molecular mechanics(QM/MM)method are adopted in simulation of the property of the molecule in the gas phase,solvated in acetonitrile and in aggregation states.It is found that large spin–orbit coupling(SOC)constants and a smaller energy gap between the first singlet excited state and the first triplet excited state(△E_(st))in prism-like single crystals(SC_(p)-form)are responsible for the TADF of(R)-lmNCz,while no TADF is found in block-like single crystals(SC_(b)-form)with a larger △E_(st).The multiple ultralong phosphorescence(UOP)peaks in the spectrum are of complex origins,and they are related not only to ImNCz but also to a minor amount of impurities(ImNBd)in the crystal prepared in the laboratory.The dimer has similar phosphorescence emission wavelengths to the(R)-lmNCz-SC_(p) monomers.The complex composed of(R)-lmNCz and(R)-lmNBd contributes to the phosphorescent emission peak at about 600 nm,and the phosphorescent emission peak at about 650 nm is generated by(R)-lmNBd.This indicates that the impurity could also contribute to emission in molecular crystals.The present calculations clarify the relationship between the molecular aggregation and the light-emitting properties of the TADF emitters and will therefore be helpful for the design of potentially more useful TADF emitters.展开更多
Thermal management has become a crucial problem for high-power-density equipment and devices.Phase change materials(PCMs)have great prospects in thermal management applications because of their large capacity of heat ...Thermal management has become a crucial problem for high-power-density equipment and devices.Phase change materials(PCMs)have great prospects in thermal management applications because of their large capacity of heat storage and isothermal behavior during phase transition.However,low intrinsic thermal conductivity,ease of leakage,and lack of flexibility severely limit their applications.Solving one of these problems often comes at the expense of other performance of the PCMs.In this work,we report core–sheath structured phase change nanocomposites(PCNs)with an aligned and interconnected boron nitride nanosheet network by combining coaxial electrospinning,electrostatic spraying,and hot-pressing.The advanced PCN films exhibit an ultrahigh thermal conductivity of 28.3 W m^(-1)K^(-1)at a low BNNS loading(i.e.,32 wt%),which thereby endows the PCNs with high enthalpy(>101 J g^(-1)),outstanding ductility(>40%)and improved fire retardancy.Therefore,our core–sheath strategies successfully balance the trade-off between thermal conductivity,flexibility,and phase change enthalpy of PCMs.Further,the PCNs provide powerful cooling solutions on 5G base station chips and thermoelectric generators,displaying promising thermal management applications on high-power-density equipment and thermoelectric conversion devices.展开更多
Southeastern China(SE China)is located in the Pacific tectonic domain and has experienced a series of tectono-magmatic events induced by the subduction of the Paleo-Pacific Plate since the late Mesozoic.The subduction...Southeastern China(SE China)is located in the Pacific tectonic domain and has experienced a series of tectono-magmatic events induced by the subduction of the Paleo-Pacific Plate since the late Mesozoic.The subduction formed a series of NE-NNE oriented faults under a NW-SE regional stress field,along which a number of thermal springs occur.Previous studies have focused on the genesis mechanism of specific geothermal fields in SE China,but the general characteristics of hydrothermal systems in SE China remains unclear.In this study,we investigate the correlation between geothermal activity,hydrochemical type and regional faults by studying the distribution of hydrothermal activity and geochemical properties of typical hydrothermal systems in SE China.The hydrothermal systems in SE China have a crustal thermally-dominated structural origin unique to the specific geological and tectonic conditions of the Eurasian Plate margin.The upwelling of the asthenosphere and the widespread granitoids with high radiogenic heat production in SE China provide major heat sources for regional geothermal anomalies.The NE-oriented crustal thermally-dominated faults are critical for the formation of geothermal anomalies and NW-oriented extensional faults have created favorable conditions for meteoric water infiltration,transportation and the formation of thermal springs.展开更多
Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often a...Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices.展开更多
Preparing polymeric coatings with well corrosion resistance and high thermal conductivity(TC)to prolong operational life and ensure service reliability of heat conductive metallic materials has long been a substantive...Preparing polymeric coatings with well corrosion resistance and high thermal conductivity(TC)to prolong operational life and ensure service reliability of heat conductive metallic materials has long been a substantive and urgent need while a difficult task.Here we report a multifunctional epoxy composite coating(F-CB/CEP)by synthesizing cerium methacrylate and ingeniously using it as a novel curing agent with corrosion inhibit for epoxy resin and modifier for boron nitride through"cation-π"interaction.The prepared F-CB/CEP coating presents a high TC of 4.29 W m^(−1)K^(−1),which is much higher than other reported anti-corrosion polymer coatings and thereby endowing metal materials coated by this coating with outstanding thermal management performance compared with those coated by pure epoxy coating.Meanwhile,the low-frequency impedance remains at 5.1×10^(11)Ωcm^(2)even after 181 days of immersion in 3.5 wt%NaCl solution.Besides,the coating also exhibits well hydrophobicity,self-cleaning properties,temperature resistance and adhesion.This work provides valuable insights for the preparation of high-performance composite coatings with potential to be used as advanced multifunctional thermal management materials,especially for heat conduction metals protection.展开更多
Thermal energy is abundantly available in our daily life and industrial production,and especially,low-grade heat is often regarded as a byproduct.Collecting and utilizing this ignored energy by low-cost and simple tec...Thermal energy is abundantly available in our daily life and industrial production,and especially,low-grade heat is often regarded as a byproduct.Collecting and utilizing this ignored energy by low-cost and simple technologies may become a smart countermeasure to relieve the energy crisis.Here,a unique device has been demonstrated to achieve high value-added conversion of low-grade heat by introducing redox-active organic alizarin(AZ)onto N-doped hollow carbon nanofibers(N–HCNF)surface.As-prepared N–HCNF/AZ can deliver a high specific capacitance of 514.3 F g^(-1)(at 1 A g^(-1))and an outstanding rate capability of 60.3%even at 50 A g^(-1).Meanwhile,the assembled symmetric proton capacitor can deliver a high energy density of 28.0 Wh kg^(-1) at 350.0 W kg^(-1) and a maximum power density of 35.0 kW kg^(-1) at 17.0 Wh kg^(-1).Significantly,the thermally chargeable proton capacitors can attain a surprisingly high Seebeck coefficient of 15.3 mV K^(-1) and a power factor of 6.02µW g^(-1).Taking advantage of such high performance,a satisfying open-circuit voltage of 481.0 mV with a temperature difference of 54 K is achieved.This research provides new insights into construction of high value-added energy systems requiring high electrochemical performances.展开更多
Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both l...Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both low-cost planar regular and inverted PSCs with excellent efficiencies(>22%)and high stability are very limited.Herein,we employ a novel inorganic ZnSe as ETL for both regular and inverted PSCs to improve the efficiency and stability using a simple thermal evaporation method.The TiO_(2)-ZnSe-FAPbl_(3)heterojunction could be formed,resulting in an improved charge collection and a decreased carrier recombination further proved through theoretical calculations.The optimized regular PSCs based on TiO_(2)/ZnSe have achieved 23.25%efficiency with negligible hysteresis.In addition,the ZnSe ETL can also effectively replace the unstable bathocuproine(BCP)in inverted PSCs.Consequently,the ZnSe-based inverted device realizes a champion efficiency of 22.54%.Moreover,the regular device comprising the TiO_(2)/ZnSe layers retains 92%of its initial PCE after 10:00 h under 1 Sun continuous illumination and the inverted device comprising the C_(60)/ZnSe layers maintains over 85%of its initial PCE at 85℃for 10:00 h.This highlights one of the best results among universal ETLs in both regular and inverted perovskite photovoltaics.展开更多
We report a simple preparation method of a renewable superhydrophobic surface by thermally induced phase separation (TIPS) and mechanical peeling. Porous polyvinylidene fluoride (PVDF) membranes with hierarchical ...We report a simple preparation method of a renewable superhydrophobic surface by thermally induced phase separation (TIPS) and mechanical peeling. Porous polyvinylidene fluoride (PVDF) membranes with hierarchical structures were prepared by a TIPS process under different cooling conditions, which were confirmed by scanning electron microscopy and mercury intrusion porosimetry. After peeling off the top layer, rough structures with hundreds of nanometers to several microns were obtained. A digital microscopy determines that the surface roughness of peeled PVDF membranes is much higher than that of the original PVDF membrane, which is important to obtain the superhydrophobicity. Water contact angle and sliding angle measurements demonstrate that the peeled membrane surfaces display super- hydrophobicity with a high contact angle (152°) and a low sliding angle (7.2°). Moreover, the superhydrophobicity can be easily recovered for many times by a simple mechanical peeling, identical to the original superhydrophobicity. This simple preparation method is low cost, and suitable for large-scale industrialization, which may offer more opportunities for practical applications.展开更多
Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)va...Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)values of prepared thermally conductive polymer composites are still difficult to achieve expectations,which has become the bottleneck in the fields of thermally conductive polymer composites.Aimed at that,based on the accumulation of the previous research works by related researchers and our research group,this paper proposes three possible directions for breaking through the bottlenecks:(1)preparing and synthesizing intrinsically thermally conductive polymers,(2)reducing the interfacial thermal resistance in thermally conductive polymer composites,and(3)establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization.Also,the future development trends of the three above-mentioned directions are foreseen,hoping to provide certain basis and guidance for the preparation,researches and development of thermally conductive polymers and their composites.展开更多
Hydrogen can be obtained by anaerobic fermentation of sewage sludge. Therefore, in this paper the effects of thermally pretreated temperatures on hydrogen production from sewage sludge were investigated under differen...Hydrogen can be obtained by anaerobic fermentation of sewage sludge. Therefore, in this paper the effects of thermally pretreated temperatures on hydrogen production from sewage sludge were investigated under different pre-treatment conditions. In the thermal pretreatment, some microbial matters of sludge were converted into soluble matters from insoluble ones. As a result, the suspended solid(SS) and volatile suspended solid(VSS) of sludge decreased and the concentration of soluble COD(SCOD) increased, including soluble carbohydrates and proteins. The experimental results showed that all of those pretreated sludge could produce hydrogen by anaerobic fermentation and the hydrogen yields under the temperatures of 121℃ and 50℃ were 12.23 ml/g VS(most) and 1.17 ml/g VS (least), respectively. It illuminated that the hydrogen yield of sludge was affected by the thermally pretreated temperatures. Additionally, the endurance of high hydrogen yield depended on the translation of microbial matters and inhibition of methanogens in the sludge. The temperatures of 100℃ and 121℃ (treated time, 30 min) could kill or inhibit completely the methanogens while the others could not. To produce hydrogen and save energy, 100℃ was chosen as the optimal temperature for thermal pretrcatment. The composition changes in liquid phase in the fermentation process were also discussed. The SCOD of sludge increased, which was affected by the pretreatment temperature. The production of volatile fatty acids in the anaerobic fermentation increased with the pretreatment temperature.展开更多
基金the National Natural Science Foundation of China(Nos.52272046,52090030,52090031,52122301,51973191)the Natural Science Foundation of Zhejiang Province(LR23E020003)+4 种基金Shanxi-Zheda Institute of New Materials and Chemical Engineering(2021SZ-FR004,2022SZ-TD011,2022SZ-TD012,2022SZ-TD014)Hundred Talents Program of Zhejiang University(188020*194231701/113,112300+1944223R3/003,112300+1944223R3/004)the Fundamental Research Funds for the Central Universities(Nos.226-2023-00023,226-2023-00082,2021FZZX001-17,K20200060)National Key R&D Program of China(NO.2022YFA1205300,NO.2022YFA1205301,NO.2020YFF0204400,NO.2022YFF0609801)“Pioneer”and“Leading Goose”R&D Program of Zhejiang 2023C01190.
文摘Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.
基金the support of the Joint Funds of the Natural Science Foundation of Hubei Province(2022CFD130)the Technology Innovation Project of Hubei Province(Key Program,No.2023BEB010)+1 种基金the Key Research and Development Program of Hubei Province(No.2021BGD015)the Knowledge Innovation Project of Wuhan(No.2022010801010259).
文摘An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass.
基金supported by the National Key Research and Development Plan(Grant No.2022YFC2905700)Natural Science Foundation of Anhui Province(Grant No.2208085ME120)Key Research and Development Plan of Anhui Province(Grant No.2022m07020001).
文摘The influence of thermal damage on macroscopic and microscopic characteristics of different rocks has received much attention in the field of rock engineering.When the rocks are subjected to thermal treatment,the change of macroscopic characteristics and evolution of micro-structure would be induced,ultimately resulting in different degrees of thermal damage in rocks.To better understand the thermal damage mechanism of different rocks and its effect on the rock performance,this study reviews a large number of test results of rock specimens experiencing heating and cooling treatment in the laboratory.Firstly,the variations of macroscopic behaviors,including physical parameters,mechanical parameters,thermal conductivity and permeability,are examined.The variations of mechanical parameters with thermal treatment variables(i.e.temperature or the number of thermal cycles)are divided into four types.Secondly,several measuring methods for microstructure,such as polarizing microscopy,fluorescent method,scanning electron microscopy(SEM),X-ray computerized tomography(CT),acoustic emission(AE)and ultrasonic technique,are introduced.Furthermore,the effect of thermal damage on the mechanical parameters of rocks in response to different thermal treatments,involving temperature magnitude,cooling method and thermal cycle,are discussed.Finally,the limitations and prospects for the research of rock thermal damage are proposed.
基金Project supported by the Doctoral Fund of Yanshan University (Grant No.B919)the Program of Independent Research for Young Teachers of Yanshan University (Grant No.020000534)the S&T Program of Hebei Province of China (Grant No.QN2016123)。
文摘Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.
基金supported by the National Natural Science Foundation of China(Nos.51801079 and 52001140)the Portugal National Funds through Fundação para a Ciência e a Tecnologia Project(No.2021.04115).
文摘To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders was fabricated by SLM.The pro-cessability,microstructure,and mechanical properties of the alloy were systematically investigated by density measurement,microstruc-ture characterization,and mechanical properties testing.The alloys fabricated at 250 W displayed higher relative densities due to a uni-formly smooth top surface and appropriate laser energy input.The maximum relative density value of the alloy reached(99.7±0.1)%,demonstrating good processability.The alloy exhibited a duplex grain microstructure consisting of columnar regions primarily and equiaxed regions with TiB_(2),Al6Mn,and Al3Er phases distributed along the grain boundaries.After directly aging treatment at a high tem-perature of 400℃,the strength of the SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy increased due to the precipitation of the secondary Al6Mn phases.The maximum yield strength and ultimate tensile strength of the aging alloy were measured to be(374±1)and(512±13)MPa,respectively.The SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy demonstrates exceptional strength and thermal stability due to the synergistic effects of the inhibition of grain growth,the incorporation of TiB_(2) nanoparticles,and the precipitation of secondary Al6Mn nanoparticles.
基金financially supported by the National Natural Science Foundation of China(52373079,52161135302,52233006)the China Postdoctoral Science Foundation(2022M711355)the Natural Science Foundation of Jiangsu Province(BK20221540).
文摘Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,and ultraviolet(UV)-induced aging problems pose significant constraints on their potential applications.Here,an ultra-elas-tic,highly breathable,and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals.Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles(NPs),an interwoven thermal con-ducting fiber network(0.72 W m^(-1) K^(-1))is constructed benefiting from the seamless thermal interfaces,facilitating unimpeded heat dissipation for comfort skin wearing.More excitingly,the elastomeric fiber substrates simultaneously achieve outstanding UV protection(UPF=143.1)and EMI shielding(SET>65,X-band)capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs.Furthermore,an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor,which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference.This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation.
基金funding support from the Natural Science Foundation of Sichuan,China(Grant No.2022NSFSC1227)the National Natural Science Foundation of China(Grant Nos.U1762216 and 51574270).
文摘The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs.
基金Institutional Fund Projects under No.(IFP-A-2022-2-5-24)by Ministry of Education and University of Hafr Al Batin,Saudi Arabia.
文摘The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.
基金supported by the National Natural Science Foundation of China(52174071,U1903216,52004052)the National Key R&D Program of China(2022YFC2903903).
文摘In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samples after thermal treatment at 25,200,400,and 600℃.Results show that the dynamic peak splitting strength of thermally damaged granite samples increases with increasing strain rate,showing obvious strain‐rate sensitivity.With increasing temperature,thermally induced cracks in granite transform from intergranular cracks to intragranular cracks,and to a transgranular crack network.Thermally induced damages reduce the dynamic peak splitting strength and the maximum absorbed energy while increasing the peak radial strain.The fracture mode of the thermally damaged granite under dynamic loads is mode Ⅱ splitting failure.By using the axial roughness index Z2 a,the distribution ranges of the wedge‐shaped failure zones and the tensile failure zones in the fracture surfaces under dynamic Brazilian splitting can be effectively identified.The radial roughness index Z_(2)^(r)is sensitive to the strain rate and temperature.It shows a linear correlation with the peak splitting strength and the maximum absorbed energy and a linear negative correlation with the peak radial strain.Z_(2)^(r)can be used to quantitatively estimate the dynamic parameters based on the models proposed.
基金by General Project of Natural Science Foundation of Beijing City(8202017)Beijing Urban Governance Research Base of North China University of Technology(2024CSZL07).
文摘The objective of this study is to investigate the factors that contribute to brittleness and to identify strategies for mitigating these factors in populations with varying degrees of thermal vulnerability,based on the potential impact of extreme heat exposure on human survival and habitability.The physiological condition of lower adaptability to high temperature environments and the assessment of individuals who may have higher tolerance time in high temperature environments based on spatial perspectives suggest the need for targeted spatial optimization strategies for commuters and disadvantaged populations.This is demonstrated through a case study.These optimization measures encompass a variety of aspects,including the integration of transportation systems,the expansion of grey space corridors,the improvement of green space layout,and the implantation of green infrastructure.The study aims to reduce the exposure time of thermally vulnerable individuals to high temperature environments through spatial optimization strategies,to enhance the resilience of urban green spaces to heat stress,and to reduce the probability of heat-wave occurrence.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974216,11874242,21933002 and 11904210)Shandong Provincial Natural Science Foundation,China(Grant No.ZR2019MA056)+1 种基金the support of the Taishan Scholar Project of Shandong Provincethe project funded by China Postdoctoral Science Foundation(Grant No.2018M642689)。
文摘Aggregation-induced thermally activated delayed fluorescence(TADF)phenomena have attracted extensive attention recently.In this paper,several theoretical models including monomer,dimer,and complex are used for the explanation of the luminescent properties of(R)-5-(9H-carbazol-9-yl)-2-(1,2,3,4-tetrahydronaphthalen-1-yl)isoindoline-1,3-dione((R)-ImNCz),which was recently reported[Chemical Engineering Journal 418129167(2021)].The polarizable continuum model(PCM)and the combined quantum mechanics and molecular mechanics(QM/MM)method are adopted in simulation of the property of the molecule in the gas phase,solvated in acetonitrile and in aggregation states.It is found that large spin–orbit coupling(SOC)constants and a smaller energy gap between the first singlet excited state and the first triplet excited state(△E_(st))in prism-like single crystals(SC_(p)-form)are responsible for the TADF of(R)-lmNCz,while no TADF is found in block-like single crystals(SC_(b)-form)with a larger △E_(st).The multiple ultralong phosphorescence(UOP)peaks in the spectrum are of complex origins,and they are related not only to ImNCz but also to a minor amount of impurities(ImNBd)in the crystal prepared in the laboratory.The dimer has similar phosphorescence emission wavelengths to the(R)-lmNCz-SC_(p) monomers.The complex composed of(R)-lmNCz and(R)-lmNBd contributes to the phosphorescent emission peak at about 600 nm,and the phosphorescent emission peak at about 650 nm is generated by(R)-lmNBd.This indicates that the impurity could also contribute to emission in molecular crystals.The present calculations clarify the relationship between the molecular aggregation and the light-emitting properties of the TADF emitters and will therefore be helpful for the design of potentially more useful TADF emitters.
基金financially National Natural Science Foundation of China(51877132)Joint Funds of National Natural Science Foundation of China(U19A20105)the Program of Shanghai Academic Research Leader(No.21XD1401600)。
文摘Thermal management has become a crucial problem for high-power-density equipment and devices.Phase change materials(PCMs)have great prospects in thermal management applications because of their large capacity of heat storage and isothermal behavior during phase transition.However,low intrinsic thermal conductivity,ease of leakage,and lack of flexibility severely limit their applications.Solving one of these problems often comes at the expense of other performance of the PCMs.In this work,we report core–sheath structured phase change nanocomposites(PCNs)with an aligned and interconnected boron nitride nanosheet network by combining coaxial electrospinning,electrostatic spraying,and hot-pressing.The advanced PCN films exhibit an ultrahigh thermal conductivity of 28.3 W m^(-1)K^(-1)at a low BNNS loading(i.e.,32 wt%),which thereby endows the PCNs with high enthalpy(>101 J g^(-1)),outstanding ductility(>40%)and improved fire retardancy.Therefore,our core–sheath strategies successfully balance the trade-off between thermal conductivity,flexibility,and phase change enthalpy of PCMs.Further,the PCNs provide powerful cooling solutions on 5G base station chips and thermoelectric generators,displaying promising thermal management applications on high-power-density equipment and thermoelectric conversion devices.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB1507401)the Project of the Chinese Geological Survey(Grant Nos.DD20230019,DD20221676)。
文摘Southeastern China(SE China)is located in the Pacific tectonic domain and has experienced a series of tectono-magmatic events induced by the subduction of the Paleo-Pacific Plate since the late Mesozoic.The subduction formed a series of NE-NNE oriented faults under a NW-SE regional stress field,along which a number of thermal springs occur.Previous studies have focused on the genesis mechanism of specific geothermal fields in SE China,but the general characteristics of hydrothermal systems in SE China remains unclear.In this study,we investigate the correlation between geothermal activity,hydrochemical type and regional faults by studying the distribution of hydrothermal activity and geochemical properties of typical hydrothermal systems in SE China.The hydrothermal systems in SE China have a crustal thermally-dominated structural origin unique to the specific geological and tectonic conditions of the Eurasian Plate margin.The upwelling of the asthenosphere and the widespread granitoids with high radiogenic heat production in SE China provide major heat sources for regional geothermal anomalies.The NE-oriented crustal thermally-dominated faults are critical for the formation of geothermal anomalies and NW-oriented extensional faults have created favorable conditions for meteoric water infiltration,transportation and the formation of thermal springs.
基金the financial support from the National Key Research and Development Program of China(No.2021YFF0500802)the National Natural Science Foundation of China(No.51890904,No.52022022,and No.52278247)the Scientific Research and Innovation Plan of Jiangsu Province(KYCX21_0090)。
文摘Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.51925403)Major Research plan of the National Natural Science Foundation of China(Grant No.91934302)+2 种基金the National Science Foundation of China(21676052,21606042)Independent Innovation Fund of Tianjin University(2023XJD0050)Funding for National Key R&D Program of China(2022YFB3808800).
文摘Preparing polymeric coatings with well corrosion resistance and high thermal conductivity(TC)to prolong operational life and ensure service reliability of heat conductive metallic materials has long been a substantive and urgent need while a difficult task.Here we report a multifunctional epoxy composite coating(F-CB/CEP)by synthesizing cerium methacrylate and ingeniously using it as a novel curing agent with corrosion inhibit for epoxy resin and modifier for boron nitride through"cation-π"interaction.The prepared F-CB/CEP coating presents a high TC of 4.29 W m^(−1)K^(−1),which is much higher than other reported anti-corrosion polymer coatings and thereby endowing metal materials coated by this coating with outstanding thermal management performance compared with those coated by pure epoxy coating.Meanwhile,the low-frequency impedance remains at 5.1×10^(11)Ωcm^(2)even after 181 days of immersion in 3.5 wt%NaCl solution.Besides,the coating also exhibits well hydrophobicity,self-cleaning properties,temperature resistance and adhesion.This work provides valuable insights for the preparation of high-performance composite coatings with potential to be used as advanced multifunctional thermal management materials,especially for heat conduction metals protection.
基金This work was supported by the National Natural Science Foundation of China(U1802256,21773118)Leading Edge Technology of Jiangsu Province(BK20202008)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_0204)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Thermal energy is abundantly available in our daily life and industrial production,and especially,low-grade heat is often regarded as a byproduct.Collecting and utilizing this ignored energy by low-cost and simple technologies may become a smart countermeasure to relieve the energy crisis.Here,a unique device has been demonstrated to achieve high value-added conversion of low-grade heat by introducing redox-active organic alizarin(AZ)onto N-doped hollow carbon nanofibers(N–HCNF)surface.As-prepared N–HCNF/AZ can deliver a high specific capacitance of 514.3 F g^(-1)(at 1 A g^(-1))and an outstanding rate capability of 60.3%even at 50 A g^(-1).Meanwhile,the assembled symmetric proton capacitor can deliver a high energy density of 28.0 Wh kg^(-1) at 350.0 W kg^(-1) and a maximum power density of 35.0 kW kg^(-1) at 17.0 Wh kg^(-1).Significantly,the thermally chargeable proton capacitors can attain a surprisingly high Seebeck coefficient of 15.3 mV K^(-1) and a power factor of 6.02µW g^(-1).Taking advantage of such high performance,a satisfying open-circuit voltage of 481.0 mV with a temperature difference of 54 K is achieved.This research provides new insights into construction of high value-added energy systems requiring high electrochemical performances.
基金supported by the Solar Energy Research Institute of Singapore(SERIS)at the National University of Singapore(NUS).SERIS is supported by NUS,the National Research Foundation Singapore(NRF),the Energy Market Authority of Singapore(EMA),and the Singapore Economic Development Board(EDB)support from the Science and Engineering Research Council of Singapore with Grant No.A1898b0043Singapore NRF CRP Grant No.NRF-CRP24-2020-0002.
文摘Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both low-cost planar regular and inverted PSCs with excellent efficiencies(>22%)and high stability are very limited.Herein,we employ a novel inorganic ZnSe as ETL for both regular and inverted PSCs to improve the efficiency and stability using a simple thermal evaporation method.The TiO_(2)-ZnSe-FAPbl_(3)heterojunction could be formed,resulting in an improved charge collection and a decreased carrier recombination further proved through theoretical calculations.The optimized regular PSCs based on TiO_(2)/ZnSe have achieved 23.25%efficiency with negligible hysteresis.In addition,the ZnSe ETL can also effectively replace the unstable bathocuproine(BCP)in inverted PSCs.Consequently,the ZnSe-based inverted device realizes a champion efficiency of 22.54%.Moreover,the regular device comprising the TiO_(2)/ZnSe layers retains 92%of its initial PCE after 10:00 h under 1 Sun continuous illumination and the inverted device comprising the C_(60)/ZnSe layers maintains over 85%of its initial PCE at 85℃for 10:00 h.This highlights one of the best results among universal ETLs in both regular and inverted perovskite photovoltaics.
基金This work is supported by the National Natural Science Foundation of China (No.51403107), the Natural Science Foundation of Ningbo (No.2015A610014), the Key Laboratory of Marine Materials and Related Tech- nologies (No.2016K07), and K. C. Wong Magna Fund in Ningbo University.
文摘We report a simple preparation method of a renewable superhydrophobic surface by thermally induced phase separation (TIPS) and mechanical peeling. Porous polyvinylidene fluoride (PVDF) membranes with hierarchical structures were prepared by a TIPS process under different cooling conditions, which were confirmed by scanning electron microscopy and mercury intrusion porosimetry. After peeling off the top layer, rough structures with hundreds of nanometers to several microns were obtained. A digital microscopy determines that the surface roughness of peeled PVDF membranes is much higher than that of the original PVDF membrane, which is important to obtain the superhydrophobicity. Water contact angle and sliding angle measurements demonstrate that the peeled membrane surfaces display super- hydrophobicity with a high contact angle (152°) and a low sliding angle (7.2°). Moreover, the superhydrophobicity can be easily recovered for many times by a simple mechanical peeling, identical to the original superhydrophobicity. This simple preparation method is low cost, and suitable for large-scale industrialization, which may offer more opportunities for practical applications.
基金National Natural Science Foundation of China(51773169 and 51973173)Guangdong Basic and Applied Basic Research Foundation(2019B1515120093)+2 种基金Technological Base Scientific Research ProjectsNatural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province(2019JC-11)Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)values of prepared thermally conductive polymer composites are still difficult to achieve expectations,which has become the bottleneck in the fields of thermally conductive polymer composites.Aimed at that,based on the accumulation of the previous research works by related researchers and our research group,this paper proposes three possible directions for breaking through the bottlenecks:(1)preparing and synthesizing intrinsically thermally conductive polymers,(2)reducing the interfacial thermal resistance in thermally conductive polymer composites,and(3)establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization.Also,the future development trends of the three above-mentioned directions are foreseen,hoping to provide certain basis and guidance for the preparation,researches and development of thermally conductive polymers and their composites.
文摘Hydrogen can be obtained by anaerobic fermentation of sewage sludge. Therefore, in this paper the effects of thermally pretreated temperatures on hydrogen production from sewage sludge were investigated under different pre-treatment conditions. In the thermal pretreatment, some microbial matters of sludge were converted into soluble matters from insoluble ones. As a result, the suspended solid(SS) and volatile suspended solid(VSS) of sludge decreased and the concentration of soluble COD(SCOD) increased, including soluble carbohydrates and proteins. The experimental results showed that all of those pretreated sludge could produce hydrogen by anaerobic fermentation and the hydrogen yields under the temperatures of 121℃ and 50℃ were 12.23 ml/g VS(most) and 1.17 ml/g VS (least), respectively. It illuminated that the hydrogen yield of sludge was affected by the thermally pretreated temperatures. Additionally, the endurance of high hydrogen yield depended on the translation of microbial matters and inhibition of methanogens in the sludge. The temperatures of 100℃ and 121℃ (treated time, 30 min) could kill or inhibit completely the methanogens while the others could not. To produce hydrogen and save energy, 100℃ was chosen as the optimal temperature for thermal pretrcatment. The composition changes in liquid phase in the fermentation process were also discussed. The SCOD of sludge increased, which was affected by the pretreatment temperature. The production of volatile fatty acids in the anaerobic fermentation increased with the pretreatment temperature.