期刊文献+
共找到838篇文章
< 1 2 42 >
每页显示 20 50 100
Mechanism of Thermally Radiative Prandtl Nanofluids and Double-Diffusive Convection in Tapered Channel on Peristaltic Flow with Viscous Dissipation and Induced Magnetic Field
1
作者 Yasir Khan Safia Akram +3 位作者 Maria Athar Khalid Saeed Alia Razia A.Alameer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1501-1520,共20页
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo... The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification. 展开更多
关键词 Double diffusion convection thermal radiation induced magnetic field peristaltic flow tapered asymmetric channel viscous dissipation Prandtl nanofluid
下载PDF
Effects of Anthropogenic CO2 and Thermally-Induced CO2 on Global Warming
2
作者 Masaharu Nishioka 《Atmospheric and Climate Sciences》 2024年第3期317-327,共11页
Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temper... Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temperature. However, examining the relationship between changes in CO2 caused by other phenomena and temperature is difficult. Studies of soil respiration (Rs) since the late 20th century have shown that CO2 emissions from soil respiration (Rs) are overwhelmingly greater than CO2 emissions from fossil fuel combustion. This is also noted in the IPCC carbon budget assessment. In this paper, the dependences of Rs on temperature, time, latitude, precipitation, seasons, etc., were investigated using the latest NASA database. The changes in temperature and Rs correlated well. There is also a good correlation between Rs and CO2 generation. Therefore, an increase in temperature results in an increase in CO2. On the other hand, there is no evidence other than model calculations that an increase in anthropogenic CO2 is mainly linked to a rise in temperature. The idea that global warming is caused by anthropogenic CO2 production is still a hypothesis. For these reasons, the relationship between global warming and anthropogenic CO2 should be reconsidered based on physical evidence without preconceptions. . 展开更多
关键词 Global Warming Anthropogenic CO2 thermally-induced CO2 Soil Respiration Carbon Cycles
下载PDF
Construction of Renewable Superhydrophobic Surfaces via Thermally Induced Phase Separation and Mechanical Peeling 被引量:2
3
作者 朱琪 虞源 +1 位作者 吴青芸 顾林 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第2期219-224,I0002,共7页
We report a simple preparation method of a renewable superhydrophobic surface by thermally induced phase separation (TIPS) and mechanical peeling. Porous polyvinylidene fluoride (PVDF) membranes with hierarchical ... We report a simple preparation method of a renewable superhydrophobic surface by thermally induced phase separation (TIPS) and mechanical peeling. Porous polyvinylidene fluoride (PVDF) membranes with hierarchical structures were prepared by a TIPS process under different cooling conditions, which were confirmed by scanning electron microscopy and mercury intrusion porosimetry. After peeling off the top layer, rough structures with hundreds of nanometers to several microns were obtained. A digital microscopy determines that the surface roughness of peeled PVDF membranes is much higher than that of the original PVDF membrane, which is important to obtain the superhydrophobicity. Water contact angle and sliding angle measurements demonstrate that the peeled membrane surfaces display super- hydrophobicity with a high contact angle (152°) and a low sliding angle (7.2°). Moreover, the superhydrophobicity can be easily recovered for many times by a simple mechanical peeling, identical to the original superhydrophobicity. This simple preparation method is low cost, and suitable for large-scale industrialization, which may offer more opportunities for practical applications. 展开更多
关键词 SUPERHYDROPHOBICITY Polyvinylidene fluoride PEELING REGENERATION thermally induced phase separation
下载PDF
PREPARATION OF MICROPOROUS ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE (UHMWPE) BY THERMALLY INDUCED PHASE SEPARATION OF A UHMWPE/LIQUID PARAFFIN MIXTURE 被引量:7
4
作者 沈烈 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2008年第6期653-657,共5页
Ultra-high molecular weight polyethylene (UHMWPE) with a microporous structure was prepared via thermally induced phase separation (TIPS).Liquid paraffin (LP) was used as a diluent in the preparation of microporous UH... Ultra-high molecular weight polyethylene (UHMWPE) with a microporous structure was prepared via thermally induced phase separation (TIPS).Liquid paraffin (LP) was used as a diluent in the preparation of microporous UHMWPE. Small angle laser light scattering (SALLS) and differential scanning calorimetry (DSC) were used to determine the phase separation temperatures,i.e.the cloud points and the dynamic crystallization temperatures,respectively.It was found that the cloudI points were coincident with the cryst... 展开更多
关键词 Ultra high molecular weight polyethylene thermally induced phase separation Liquid paraffin.
下载PDF
Effect of Diluent on the Morphology and Performance of IPP Hollow Fiber Microporous Membrane via Thermally Induced Phase Separation 被引量:6
5
作者 杨振生 李凭力 +1 位作者 常贺英 王世昌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第3期394-397,共4页
Isotactic polypropylene (iPP) hollow fiber microporous membranes were prepared using thermally induced phase separation (TIPS) method. Di-n-butyl phthalate (DBP), dioctyl phthalate (DOP), and the mixed solvent... Isotactic polypropylene (iPP) hollow fiber microporous membranes were prepared using thermally induced phase separation (TIPS) method. Di-n-butyl phthalate (DBP), dioctyl phthalate (DOP), and the mixed solvent were used as diluents. The effect of α (DOP mass fraction in diluent) on the morphology and performance of the hollow fiber was investigated. With increasing α, the morphology of the resulting hollow fiber changes from typical cellular structure to mixed structure, and then to typical particulate structure. As a result, the permeability of the hollow fiber increases sharply, and the mechanical properties of the hollow fiber decrease obviously. It is suggested that the morphology and performances of iPP hollow fiber microporous membrane can be controlled via adjusting the compatibility between iPP and diluent. 展开更多
关键词 thermally induced phase separation hollow fiber isotactic polypropylene MEMBRANE MORPHOLOGY
下载PDF
PREPARATION OF HIGH DENSITY POLYETHYLENE/POLYETHYLENE-BLOCK-POLY(ETHYLENE GLYCOL)COPOLYMER BLEND POROUS MEMBRANES VIA THERMALLY INDUCED PHASE SEPARATION PROCESS AND THEIR PROPERTIES 被引量:3
6
作者 朱宝库 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2010年第3期337-346,共10页
High density polyethylene (HDPE)/polyethylene-block-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as d... High density polyethylene (HDPE)/polyethylene-block-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as diluent. The phase diagrams of HDPE/PE-b-PEG/DPE systems were determined by optical microscopy and differential scanning calorimetry (DSC). By varying the content of PE-b-PEG, the effects of PE-b-PEG copolymer on morphology and crystalline structure of membranes were studied by scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The chemical compositions of whole membranes and surface layers were characterized by elementary analysis, Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Water contact angle, static protein adsorption and water flux experiments were used to evaluate the hydrophilicity, antifouling and water permeation properties of the membranes. It was found that the addition of PE-b-PEG increased the pore size of the obtained blend membranes. In the investigated range of PE-b-PEG content, the PEG blocks could not aggregate into obviously separated domains in membrane matrix. More importantly, PE-b-PEG could not only be retained stably in the membrane matrix during membrane formation, but also enrich at the membrane surface layer. Such stability and surface enrichment of PE-b-PEG endowed the blend membranes with improved hydrophilicity, protein absorption resistance and water permeation properties, which would be substantially beneficial to HDPE membranes for water treatment application. 展开更多
关键词 High density polyethylene Polyethylene-block-poly(ethylene glycol) copolymer Blend porous membrane thermally induced phase separation.
下载PDF
Effects of F127 on Properties of PVB/F127 Blend Hollow Fiber Membrane via Thermally Induced Phase Separation 被引量:5
7
作者 邱运仁 松山秀人 +2 位作者 钟宏 叶红齐 黄可龙 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第2期207-216,共10页
Hydrophilic poly(vinyl butyral)(PVB) /Pluronic F127(F127) blend hollow fiber membranes were prepared via thermally induced phase separation(TIPS) ,and the effects of blend composition on the performance of hydrophilic... Hydrophilic poly(vinyl butyral)(PVB) /Pluronic F127(F127) blend hollow fiber membranes were prepared via thermally induced phase separation(TIPS) ,and the effects of blend composition on the performance of hydrophilic PVB/F127 blend hollow fiber membrane were investigated.The addition of F127 to PVB/polyethylene glycol(PEG) system decreases the cloud point temperature,while the cloud point temperature increases slightly with the addition of F127 to 20%(by mass) PVB/F127/PEG200 system when the concentration of F127 is not higher than 5%(by mass) .Light scattering results show that the initial inter-phase periodic distance formed from the phase separation of 20%(by mass) PVB/F127/PEG200 system decreases with the addition of F127,so does the growth rate during cooling process.The blend hollow fiber membrane prepared at air-gap 5mm,of which the water permeability increases and the rejection changes little with the increase of F127 concentration.For the membrane prepared at zero air-gap,both water permeability and rejection of the PVB/F127 blend membrane are greater than those of PVB membrane,while the tensile strength changes little.Elementary analysis shows that most F127 in the polymer solution can firmly exist in the polymer matrix,increasing the hydrophilicity of the blend membrane prepared at air-gap of 5mm. 展开更多
关键词 thermally induced phase separation hollow fiber membrane blend membrane poly(vinyl butyral) Pluronic F127
下载PDF
Fabrication of poly(vinylidene fluoride) membrane via thermally induced phase separation using ionic liquid as green diluent 被引量:5
8
作者 Xiaozu Wang Xiaogang Li +6 位作者 Juan Yue Yangming Cheng Ke Xu Qian Wang Fan Fan Zhaohui Wang Zhaoliang Cui 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第5期1415-1423,共9页
Ionic liquid(IL),1-butyl-3-methylimidazolium hexafluorophosphate([BMIM]PF6)as a new and environmentally friendly diluent was introduced to prepare poly(vinylidene fluoride)(PVDF)membranes via thermally induced phase s... Ionic liquid(IL),1-butyl-3-methylimidazolium hexafluorophosphate([BMIM]PF6)as a new and environmentally friendly diluent was introduced to prepare poly(vinylidene fluoride)(PVDF)membranes via thermally induced phase separation(TIPS).Phase diagram of PVDF/[BMIM]PF6 was measured.The effects of polymer concentration and quenching temperature on the morphologies,properties,and performances of the PVDF membranes were investigated.When the polymer concentration was 15 wt%,the pure water flux of the fabricated membrane was up to nearly 2000 L·m-2·h-1,along with adequate mechanical strength.With the increasing of PVDF concentration and quenching temperature,mean pore size and water permeability of the membrane decreased.SEM results showed that PVDF membranes manufactured by ionic liquid(BMIm PF6)presented spherulite structure.And the PVDF membranes were represented asβphase by XRD and FTIR characterization.It provides a new way to prepare PVDF membranes with piezoelectric properties. 展开更多
关键词 Ionic liquid Poly(vinylidene fluoride)membrane thermally induced phase separation
下载PDF
Effect of Diluent on the Morphology and Performance of IPP Hollow Fiber Microporous Membrane via Thermally Induced Phase Separation 被引量:2
9
作者 杨振生 李凭力 +1 位作者 常贺英 王世昌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第3X期394-397,共4页
关键词 thermally induced phase separation HOLLOW fiber ISOTACTIC POLYPROPYLENE membrane MORPHOLOGY
下载PDF
Synergistic action of non-solvent induced phase separation in preparation of poly(vinyl butyral) hollow fiber membrane via thermally induced phase separation 被引量:3
10
作者 邱运仁 漆静 韦玉清 《Journal of Central South University》 SCIE EI CAS 2014年第6期2184-2190,共7页
A systematic study of air gap distance effects on the structure and properties of poly(vinyl butyral)hollow fiber membrane via thermally induced phase separation(TIPS)has been carried out.The results show that the hol... A systematic study of air gap distance effects on the structure and properties of poly(vinyl butyral)hollow fiber membrane via thermally induced phase separation(TIPS)has been carried out.The results show that the hollow fiber membrane prepared at air gap zero has no skin layer; the pore size near the outer surface is larger than that near the inner surface; and the special pore channel-like structure near the outer surface is formed,which is quite different with the typical sponge-like structure caused by TIPS and the finger-like structure caused by non-solvent induced phase separation(NIPS),because of the synergistic action of non-solvent induced phase separation at air gap zero.The pore size gradually decreases from outer surface layer to the intermediate layer,but increases gradually from intermediate layer to the inner surface layer.With the increase of air gap distance,the pore size near the outer surface gets smaller and a dense skin layer is formed,and the pore size gradually increases from the outer surface layer to the inner surface layer.Water permeability of the hollow fiber membrane decreases with air gap distance,the water permeability decreases sharply from 45.50×10-7 to 4.52×10-7 m3/(m2·s·kPa)as air gap increases from 0 to 10 mm at take-up speed of 0.236 m/s,further decreases from 4.52×10-7 to 1.00×10-8 m3/(m2·s·kPa)as the air gap increases from 10 to 40 mm.Both the breaking strength and the elongation increase with the increase of air gap distance.The breaking strength increases from 2.25 MPa to 4.19 MPa and the elongation increases from 33.9% to 132.6% as air gap increases from 0 mm to 40 mm at take-up speed 0.236 m/s. 展开更多
关键词 thermally induced phase separation hollow fiber membranes synergistic action hydrophilic membrane
下载PDF
Effects of coagulation bath temperature on structure and performance of poly(vinyl butyral) hollow fiber membranes via thermally induced phase separation 被引量:2
11
作者 张明 邱运仁 《Journal of Central South University》 SCIE EI CAS 2014年第8期3057-3062,共6页
Poly (vinyl butyral) (PVB) hollow fiber membranes were fabricated via thermally induced phase separation (TIPS). The effects of coagulation bath temperature (CBT) on the structure and performance of membranes ... Poly (vinyl butyral) (PVB) hollow fiber membranes were fabricated via thermally induced phase separation (TIPS). The effects of coagulation bath temperature (CBT) on the structure and performance of membranes were investigated in detail. The morphologies of the membranes were studied by scanning electron microscopy (SEM), the performances of water permeability, rejection, breaking strength and elongation were measured, respectively. The results indicate that all the membranes have the asymmetric morphology and the thickness of the skin layer decreases and the pore size of the outer layer increases with the increase of CBT. The permeability of membranes prepared at air gap 1.0 cm and take-up speed 0.253 m/s increases from 1.047×10-7 to 5.909×10-7 m3/(m2·s-kPa) with the CBT increasing from 20 ℃ to 40℃, and sharply increases to 35.226×10 7 m3/(m2.s.kPa)once the CBT arrives at 50 ℃. While the carbonic ink rejections have no significant decrease, totally exceed 98%, but that of acid-maleic acid copolymer greatly decreases with the increase of CBT. Both the breaking strength and elongation decrease with the increase of CBT. 展开更多
关键词 thermally induced phase separation coagulation bath temperature poly (vinyl butyral) hollow fiber membrane
下载PDF
Effect of boundary conditions and convection on thermally induced motion of beams subjected to internal heating 被引量:1
12
作者 MALIK Pravin KADOLI Ravikiran GANESAN N. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第7期1044-1052,共9页
Numerical exercises are presented on the thermally induced motion of internally heated beams under various heat transfer and structural boundary conditions. The dynamic displacement and dynamic thermal moment of the b... Numerical exercises are presented on the thermally induced motion of internally heated beams under various heat transfer and structural boundary conditions. The dynamic displacement and dynamic thermal moment of the beam are analyzed taking into consideration that the temperature gradient is independent as well as dependent on the beam displacement. The effect of length to thickness ratio of the beam on the thermally induced vibration is also investigated. The type of boundary conditions has its influence on the magnitude of dynamic displacement and dynamic thermal moment. A sustained thermally induced motion is observed with progress of time when the temperature gradient being evaluated is dependent on the forced convection generated due to beam motion. A finite element method (FEM) is used to solve the structural equation of motion as well as the heat transfer equation. 展开更多
关键词 Thermal induced oscillations Natural convection Forced convection Finite element analysis
下载PDF
Effect of Extractant and Cold-drawing on the Structure and Performance of HDPE Hollow Fiber Membranes Fabricated via Thermally Induced Phase Separation Method 被引量:1
13
作者 王建黎 阮文祥 +2 位作者 宋义林 计建炳 姚克俭 《Journal of Donghua University(English Edition)》 EI CAS 2006年第4期59-62,共4页
Microporous polyolefin hollow fiber membranes were prepared from high density polyethylene (HDPE)-paraffin solution via thermally induced phase separation (TIPS) method. Effects of extraction and cold-drawing cond... Microporous polyolefin hollow fiber membranes were prepared from high density polyethylene (HDPE)-paraffin solution via thermally induced phase separation (TIPS) method. Effects of extraction and cold-drawing condition on membrane structure and performance were investigated.Five volatile solvents were used as extractant. Dimension of hollow fiber and gas permeation rate of membrane were measured. Mierostructure of membrane was examined by Scanning Electronic Microscope (SEM). The results show that the membrane treated by pentane possesses a higher porosity, nitrogen permeability and lower shrinkage than those of membranes extracted by other three extractants. It is also found that the membrane stretched 133% shows the highest porosity and gas permeability in this study. 展开更多
关键词 thermally induced phase separation polyethylene hollow fiber microporous membrane.
下载PDF
Effect of thermally induced birefringence on high power picosecond azimuthal polarization Nd:YAG laser system
14
作者 Hongpan Peng Ce Yang +2 位作者 Shang Lu Ning Ma Meng Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第2期234-240,共7页
Pulse-burst 1064-nm picosecond azimuthal polarization beam amplification up to an average power of 16.32 W using side-pumped Nd: YAG amplifiers has been demonstrated. The maximum envelop energy as much as 16.32 mJ, co... Pulse-burst 1064-nm picosecond azimuthal polarization beam amplification up to an average power of 16.32 W using side-pumped Nd: YAG amplifiers has been demonstrated. The maximum envelop energy as much as 16.32 mJ, corresponding to a power amplification factor of 299.5%. A simple criterion was defined to help estimate the amount of depolarization in Nd:YAG amplifier stages. The degree of depolarization of the beam was 7.1% and the beam quality was measured to be M2= 3.69. The reason for the azimuthal polarization depolarization and beam quality degradation were explained theoretically and experimentally during the amplification process. 展开更多
关键词 azimuthal POLARIZATION thermally induced BIREFRINGENCE ND:YAG AMPLIFIERS PICOSECOND laser
下载PDF
Thermally Induced Vibration Analysis of Flexible Beams Based on Isogeometric Analysis
15
作者 Jianchen Wu Yujie Guo Fangli Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期1007-1031,共25页
Spacecraft flexible appendages may experience thermally induced vibrations(TIV)under sudden heating loads,which in consequence will be unable to complete their intended missions.Isogeometric analysis(IGA)utilizes,in a... Spacecraft flexible appendages may experience thermally induced vibrations(TIV)under sudden heating loads,which in consequence will be unable to complete their intended missions.Isogeometric analysis(IGA)utilizes,in an isoparametric concept,the same high order and high continuity non-uniform rational B-splines(NURBS)to represent both the geometry and the physical field of the structure.Compared to the traditional Lagrange polynomial based finite element method where only C0-continuity across elements can be achieved,IGA is geometrically exact and naturally fulfills the C1-continuity requirement of Euler–Bernoulli(EB)beam elements,therefore,does not need extra rotational degrees-of-freedom.In this paper,we present a thermally induced vibration analysis framework based on the isogeometric method where thermal and structural behaviors are coupled.We fully exploited the higher order,higher continuous and geometric exactness of the NURBS basis with both benchmarks and sophisticated problems.In particular,we studied the thermally induced vibrations of the Hubble Space Telescope(HST)solar panel where main factors influencing thermal flutters are studied,and where possible improvements of the analytical reference methods are discussed.Additionally,thermally induced vibrations of the thin-walled lenticular tubes are studied and two new configurations of the tube are proposed to effectively suppress the thermally induced vibrations.Numerical examples of both benchmarks and sophisticated problems confirm the accuracy and efficiency of the isogeometric analysis framework for thermally induced vibration analysis of space structures. 展开更多
关键词 thermally induced vibration thermal flutter radiation heat transfer isogeometric analysis thermal structural coupling
下载PDF
Fabrication of Poly(vinylidene fluoride) /Polysulfone Flat Blend Membranes via Thermally Induced Phase Separation Process for Water Treatment 被引量:2
16
作者 张晶 齐鲁 崔振宇 《Journal of Donghua University(English Edition)》 EI CAS 2016年第5期827-830,共4页
Poly(vinylidene fluoride) /polysulfone(PVDF/PSF) flat blend membrane was prepared via thermally induced phase separation(TIPS) technique.The membrane formation mechanism and membrane structure were investigated and th... Poly(vinylidene fluoride) /polysulfone(PVDF/PSF) flat blend membrane was prepared via thermally induced phase separation(TIPS) technique.The membrane formation mechanism and membrane structure were investigated and the effects of PSF/PVDF weight ratio on morphology,crystallinity,porosity,and mechanical properties of the membrane were discussed.The relationship between membrane structure and performances,such as pure water flux and the rejection of carbonic black,was also discussed.It was found that solid-liquid(S-L) phase separation occurred for the PVDF/PSF/diluent system.The addition of PSF influences structure and crystallinity of the membrane,which in turn influences mechanical properties and performances of the membrane.The results reveal that it is possible to obtain network structure via S-L phase separation by blending the polymer,which has a partial compatibility with PVDF. 展开更多
关键词 crystallinity fluoride blend thermally porosity rejection viscosity permeation benzene calorimetry
下载PDF
Photo-Induced Thermally Stimulated Depolarization Current (TSDC) in Natural and Synthetic Alexandrite (BeAl2O4:Cr3+)
17
作者 Neilo Marcos Trindade Ana Regina Blak +2 位作者 Elisabeth Mateus Yoshimura Luis Vicente de Andrade Scalvi Rosa Maria Fernandes Scalvi 《Materials Sciences and Applications》 2016年第12期881-894,共14页
The investigation of electrical properties in alexandrite (BeAl<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup>) in synthetic and natural forms is presented in this paper. Alexandrite is a... The investigation of electrical properties in alexandrite (BeAl<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup>) in synthetic and natural forms is presented in this paper. Alexandrite is a rare and precious mineral that changes color according to the light incident on it. In the synthetic form, it is used technologically as an active laser medium. The electrical characterization was obtained using the Thermally Stimulated Depolarization Current (TSDC) technique, an interesting tool to study the behavior of impurities in insulators. Alexandrite presented the electric dipole relaxation phenomenon, both in natural and in synthetic samples. It was possible to observe TSDC bands for the synthetic sample at around 170 K, and at around 175 K for the natural sample. Besides, photo-induced TSDC measurements were performed through the excitement of the samples by using a continuous wave argon laser. In addition, photoluminescence measurements were performed to verify in advance whether the laser light would be absorbed by the sample, and in order to complement the photo-induced TSDC measurements analysis. The results of photo-induced TSDC experiments have contributed to the understanding of the TSDC bands behavior: the results obtained with the technique suggest that there is an effective participation of Cr<sup>3+</sup> ions in the formation of TSDC bands because they were more intense when the sample was exposed to the argon laser beam. 展开更多
关键词 ALEXANDRITE Chrysoberyl thermally Stimulated Depolarization Current (TSDC) PHOTOLUMINESCENCE Photo-induced
下载PDF
盘式制动器在不同制动模式下的热-机耦合行为研究 被引量:1
18
作者 袁琼 《机械科学与技术》 CSCD 北大核心 2024年第3期446-456,共11页
对盘式制动器在拖曳制动、紧急制动和缓慢制动这3种不同制动模式下的热-机耦合行为进行分析。结果表明,在拖曳制动模式下,制动盘两侧摩擦片的变形形式各不相同,因此制动盘两侧摩擦片的温度分布不一致。此外,钳指侧和活塞侧摩擦片的振动... 对盘式制动器在拖曳制动、紧急制动和缓慢制动这3种不同制动模式下的热-机耦合行为进行分析。结果表明,在拖曳制动模式下,制动盘两侧摩擦片的变形形式各不相同,因此制动盘两侧摩擦片的温度分布不一致。此外,钳指侧和活塞侧摩擦片的振动信号和接触力信号差异明显,钳指侧对摩擦副的摩擦振动逐渐加剧,并产生新的振动频率;活塞侧对摩擦副的振动趋于稳定,原有的振动频率逐渐消失;在紧急制动模式下,制动盘两侧摩擦片的温度分布特征类似,均是从进摩擦区向出摩擦区扩散,但是由于作用时间较短,温度上升不明显。但两侧摩擦片的振动信号有所区别,尤其是活塞侧摩擦片出现持续自激振动,并且产生新的振动频率。在缓慢制动模式下,虽然制动盘两侧的摩擦片外径均为表面高温区,但在制动后期,活塞侧摩擦片表面高温排布呈现出“点状分布式”特点。钳指侧摩擦片和活塞侧摩擦片的振动信号存在差异,钳指侧摩擦片振动持续时间较长,但其振动强度较活塞侧则更加微弱。界面力学信号分析结果很好地验证了该结论。 展开更多
关键词 热-机耦合 制动 摩擦振动 接触温度
下载PDF
红曲糟抗热肽的制备及其对酿酒酵母热激氧化耐受性的影响
19
作者 林晓婕 苏昊 +5 位作者 梁璋成 陈秉彦 林晓姿 汪少芸 何志刚 李维新 《食品科学》 EI CAS CSCD 北大核心 2024年第19期49-56,共8页
制备红曲糟抗热肽,研究其对酿酒酵母抵御热激氧化行为的影响。以酿酒酵母热激存活率为指标,筛选蛋白酶,通过抗热肽得率优化酶解条件,对抗热肽进行质谱和抗氧化能力分析,通过磷酸戊糖通路基因表达、胞内辅酶、谷胱甘肽(glutathione,GSH)... 制备红曲糟抗热肽,研究其对酿酒酵母抵御热激氧化行为的影响。以酿酒酵母热激存活率为指标,筛选蛋白酶,通过抗热肽得率优化酶解条件,对抗热肽进行质谱和抗氧化能力分析,通过磷酸戊糖通路基因表达、胞内辅酶、谷胱甘肽(glutathione,GSH)以及活性氧自由基(reactive oxygen species,ROS)含量分析,从抗氧化角度探索抗热肽对酿酒酵母的热保护作用。结果表明,红曲糟抗热肽最佳酶解工艺为:红曲糟蛋白和水固液比1∶10(m/m)、复合蛋白酶酶解、温度50℃、时间3 h、加酶量3000 U/g、pH 8.5,该条件下抗热肽得率62.44%,酿酒酵母热激存活率73.97%,较纯水组提高了22.76%。序列鉴定表明,丰度前20的肽段中16条肽段的疏水氨基酸占比50%以上。抗热肽1,1-二苯基-2-三硝基苯肼自由基半数清除量为4.53 mg/mL,2,2′-联氮双(3-乙基苯并噻唑啉-6-磺酸)阳离子自由基半数清除量为1.82 mg/mL,具有抗氧化活性。同时,抗热肽通过上调磷酸戊糖途径的基因表达量,提升NADH激酶活性,促进还原型辅酶II的转化,使GSH含量提高4.74倍,胞内ROS水平与热激前酿酒酵母基本保持一致,从而有效提高了酿酒酵母抵御热激氧化胁迫的能力。 展开更多
关键词 红曲糟 抗热肽 热激氧化 酿酒酵母
下载PDF
粉末近净成形在航天发动机领域的应用
20
作者 徐磊 陈晓 +2 位作者 田晓生 卢正冠 吴杰 《航空制造技术》 CSCD 北大核心 2024年第17期32-43,共12页
粉末近净成形(Powder metallurgy near net shaping,PM-NNS)技术能够制备出具有优异综合力学性能的粉末合金复杂部件。介绍了粉末热等静压(Hot isostatic pressing,HIP)近净成形技术原理及优势,综述了近年来国内外粉末近净成形在航天发... 粉末近净成形(Powder metallurgy near net shaping,PM-NNS)技术能够制备出具有优异综合力学性能的粉末合金复杂部件。介绍了粉末热等静压(Hot isostatic pressing,HIP)近净成形技术原理及优势,综述了近年来国内外粉末近净成形在航天发动机领域的研究现状,从工艺路线和构件研制两方面展开,简述了构件制备过程的影响因素及缺陷控制,结合中国科学院金属研究所粉末近净成形技术在航天发动机领域的研究及应用情况,总结了粉末近净成形技术当前存在的主要问题及发展方向,以期进一步拓宽该技术的应用范围。 展开更多
关键词 近净成形 热等静压 航天发动机 热诱导孔洞 原始颗粒边界
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部