This paper is mainly focused on the attitude dynamics and control of a fuel-filled flexible spacecraft sub- jected to the thermal payload during eclipse transitions. The flexible appendages are considered as Euler-Ber...This paper is mainly focused on the attitude dynamics and control of a fuel-filled flexible spacecraft sub- jected to the thermal payload during eclipse transitions. The flexible appendages are considered as Euler-Bernoulli beams, and the sloshing liquid is modeled as in two modes multi-spring-mass models; the governing equations of this coupled system are developed by using Hamilton's prin- ciple. Numerical results show that the spacecraft attitude responses consist of a quasi-static displacement and superim- posed vibration. Then, we design an adaptive sliding mode and use the Lyapunov approach control law to control the attitude disturbance and suppress the thermal jitter and liq- uid sloshing for the fuel filled flexible spacecraft subject to the thermal payload. Numerical results are presented to verify the efficiency of the hybrid control methods. The results show that the adaptive sliding mode method might be effective to handle the steady-state errors and the Lyapunov control algo- rithm would suppress the residual vibration.展开更多
基金supported by the National Natural Science Foundation of China(NNSFC)(Grant 11472041)the Research Fund for the Doctoral Program of Higher Education of China(Grant 20131101110002)
文摘This paper is mainly focused on the attitude dynamics and control of a fuel-filled flexible spacecraft sub- jected to the thermal payload during eclipse transitions. The flexible appendages are considered as Euler-Bernoulli beams, and the sloshing liquid is modeled as in two modes multi-spring-mass models; the governing equations of this coupled system are developed by using Hamilton's prin- ciple. Numerical results show that the spacecraft attitude responses consist of a quasi-static displacement and superim- posed vibration. Then, we design an adaptive sliding mode and use the Lyapunov approach control law to control the attitude disturbance and suppress the thermal jitter and liq- uid sloshing for the fuel filled flexible spacecraft subject to the thermal payload. Numerical results are presented to verify the efficiency of the hybrid control methods. The results show that the adaptive sliding mode method might be effective to handle the steady-state errors and the Lyapunov control algo- rithm would suppress the residual vibration.