Phase diagrams for the CsF-UF4 and CsF-ThF4 systems were modeled in the present work through computational thennodynamics. The associate solution model with various complex species(CsMFs, Cs2MF6 and Cs3MF7; M=Th, U)...Phase diagrams for the CsF-UF4 and CsF-ThF4 systems were modeled in the present work through computational thennodynamics. The associate solution model with various complex species(CsMFs, Cs2MF6 and Cs3MF7; M=Th, U) was used to thermodynamically describe the binary molten salts. A total of ten intermediate phases were treated as stoichiometric compounds with their Gibbs energies modeled according to the Neumann-Kopp rule. All these model parameters were optimized by the least squares procedure until good coincidence was achieved between the calculated results and most of the experimental data. The derived thermodynamic parameters will be merged into the multicomponent CsF-LiF-BeF2-ThF4-UF4 database for analyzing physicochemical behavior of CsF in the fuel salt of the molten salt breeder reactor.展开更多
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XD02002400) and the National Natural Science Foundation of China(No.21473234).
文摘Phase diagrams for the CsF-UF4 and CsF-ThF4 systems were modeled in the present work through computational thennodynamics. The associate solution model with various complex species(CsMFs, Cs2MF6 and Cs3MF7; M=Th, U) was used to thermodynamically describe the binary molten salts. A total of ten intermediate phases were treated as stoichiometric compounds with their Gibbs energies modeled according to the Neumann-Kopp rule. All these model parameters were optimized by the least squares procedure until good coincidence was achieved between the calculated results and most of the experimental data. The derived thermodynamic parameters will be merged into the multicomponent CsF-LiF-BeF2-ThF4-UF4 database for analyzing physicochemical behavior of CsF in the fuel salt of the molten salt breeder reactor.