The hydrotreater system heat exchanger is one of the main pieces of heat exchange equipment in petrochemical enterprises.In recent years,oil resources have shown a deterioration trend of high sulfur and high acid cont...The hydrotreater system heat exchanger is one of the main pieces of heat exchange equipment in petrochemical enterprises.In recent years,oil resources have shown a deterioration trend of high sulfur and high acid content,with corrosion risk being prominent in oil processing.Taking the multi-medium flow corrosion risk of the hydrotreater heat exchanger pipeline in a petrochemical enterprise as the research object,based on the parameter characteristics of corrosive NH_(3) and HCl media under a high-temperature and high-pressure environment,the ammonium salt crystallization and deposition mechanism under multi-phase flow is revealed.The thermodynamic equilibrium curve is modified based on the thermodynamic principle and fugacity coefficient variation,and the prediction model of ammonium chloride crystallization in hydrotreater heat exchanger under high temperature and high pressure is constructed according to the modification.This study uses the mixture model,the flow-thermal coupling method,and the discrete phase model method to carry out the numerical simulation of multiphase flow and the numerical prediction of particle distribution characteristics in the heat exchanger pipeline of the hydrotreater heat exchange equipment,so as to realize the quantitative prediction of the particle crystallization deposition distribution in the pipeline.The results show that with the decrease of temperature,the crystallization occurs first on both sides of the center of the tube bundle,and more crystallization occurs in the lower half of the U-shaped tube,which may seriously lead to problems such as pipe blockage and under-deposit corrosion.展开更多
This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achi...This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achieve the optimization o players' objective functions while restricting their actions within required non-empty, convex and compact domains. In addition, a leader-following consensus protocol, in which quantized informa tion flows are utilized, is employed for information sharing among players. More specifically, logarithmic quantizers and uniform quantizers are investigated under both undirected and connected communication graphs and strongly connected digraphs, respec tively. Through Lyapunov stability analysis, it is shown that play ers' actions can be steered to a neighborhood of the Nash equilib rium with logarithmic and uniform quantizers, and the quanti fied convergence error depends on the parameter of the quan tizer for both undirected and directed cases. A numerical exam ple is given to verify the theoretical results.展开更多
The flotation of complex solid–liquid multiphase systems involve interactions among multiple components,the core problem facing flotation theory.Meanwhile,the combined use of multicomponent flotation reagents to impr...The flotation of complex solid–liquid multiphase systems involve interactions among multiple components,the core problem facing flotation theory.Meanwhile,the combined use of multicomponent flotation reagents to improve mineral flotation has become an important issue in studies on the efficient use of refractory mineral resources.However,studying the flotation of complex solid–liquid systems is extremely difficult,and no systematic theory has been developed to date.In addition,the physical mechanism associated with combining reagents to improve the flotation effect has not been unified,which limits the development of flotation theory and the progress of flotation technology.In this study,we applied theoretical thermodynamics to a solid–liquid flotation system and used changes in the entropy and Gibbs free energy of the reagents adsorbed on the mineral surface to establish thermodynamic equilibrium equations that de-scribe interactions among various material components while also introducing adsorption equilibrium constants for the flotation reagents adsorbed on the mineral surface.The homogenization effect on the mineral surface in pulp solution was determined using the chemical potentials of the material components of the various mineral surfaces required to maintain balance.The flotation effect can be improved through synergy among multicomponent flotation reagents;its physical essence is the thermodynamic law that as the number of compon-ents of flotation reagents on the mineral surface increases,the surface adsorption entropy change increases,and the Gibbs free energy change of adsorption decreases.According to the results obtained using flotation thermodynamics theory,we established high-entropy flotation theory and a technical method in which increasing the types of flotation reagents adsorbed on the mineral surface,increasing the adsorption entropy change of the flotation reagents,decreasing the Gibbs free energy change,and improving the adsorption efficiency and stability of the flotation reagents improves refractory mineral flotation.展开更多
The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainl...The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainly concentrate on the cooperative pursuit of multiple players in two-dimensional pursuit-evasion games. However, these approaches can hardly be applied to practical situations where players usually move in three-dimensional space with a three-degree-of-freedom control. In this paper,we make the first attempt to investigate the equilibrium strategy of the realistic pursuit-evasion game, in which the pursuer follows a three-degree-of-freedom control, and the evader moves freely. First, we describe the pursuer's three-degree-of-freedom control and the evader's relative coordinate. We then rigorously derive the equilibrium strategy by solving the retrogressive path equation according to the Hamilton-Jacobi-Bellman-Isaacs(HJBI) method, which divides the pursuit-evasion process into the navigation and acceleration phases. Besides, we analyze the maximum allowable speed for the pursuer to capture the evader successfully and provide the strategy with which the evader can escape when the pursuer's speed exceeds the threshold. We further conduct comparison tests with various unilateral deviations to verify that the proposed strategy forms a Nash equilibrium.展开更多
We derived the properties of the terrestrial magnetopause(MP)from two modeling approaches,one global–fluid,the other local–kinetic,and compared the results with data collected in situ by the Magnetospheric Multiscal...We derived the properties of the terrestrial magnetopause(MP)from two modeling approaches,one global–fluid,the other local–kinetic,and compared the results with data collected in situ by the Magnetospheric Multiscale 2(MMS2)spacecraft.We used global magnetohydrodynamic(MHD)simulations of the Earth’s magnetosphere(publicly available from the NASA-CCMC[National Aeronautics and Space Administration–Community Coordinated Modeling Center])and local Vlasov equilibrium models(based on kinetic models for tangential discontinuities)to extract spatial profiles of the plasma and field variables at the Earth’s MP.The global MHD simulations used initial solar wind conditions extracted from the OMNI database at the time epoch when the MMS2 observes the MP.The kinetic Vlasov model used asymptotic boundary conditions derived from the same in situ MMS measurements upstream or downstream of the MP.The global MHD simulations provide a three-dimensional image of the magnetosphere at the time when the MMS2 crosses the MP.The Vlasov model provides a one-dimensional local view of the MP derived from first principles of kinetic theory.The MMS2 experimental data also serve as a reference for comparing and validating the numerical simulations and modeling.We found that the MP transition layer formed in global MHD simulations was generally localized closer to the Earth(roughly by one Earth radius)from the position of the real MP observed by the MMS.We also found that the global MHD simulations overestimated the thickness of the MP transition by one order of magnitude for three analyzed variables:magnetic field,density,and tangential speed.The MP thickness derived from the local Vlasov equilibrium was consistent with observations for all three of these variables.The overestimation of density in the Vlasov equilibrium was reduced compared with the global MHD solutions.We discuss our results in the context of future SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)campaigns for observing the Earth’s MP.展开更多
Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen...Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen energy lies in the development of high-performance hydrogen storage materials.Magnesium-based hydrogen storage materials exhibit remarkable advantages,including high hydrogen storage density,cost-effectiveness,and abundant magnesium resources,making them highly promising for the hydrogen energy sector.Nonetheless,practical applications of magnesium hydride for hydrogen storage face significant challenges,primarily due to their slow kinetics and stable thermodynamic properties.Herein,we briefly summarize the thermodynamic and kinetic properties of MgH2,encompassing strategies such as alloying,nanoscaling,catalyst doping,and composite system construction to enhance its hydrogen storage performance.Notably,nanoscaling and catalyst doping have emerged as more effective modification strategies.The discussion focuses on the thermodynamic changes induced by nanoscaling and the kinetic enhancements resulting from catalyst doping.Particular emphasis lies in the synergistic improvement strategy of incorporating nanocatalysts with confinement materials,and we revisit typical works on the multi-strategy optimization of MgH2.In conclusion,we conduct an analysis of outstanding challenges and issues,followed by presenting future research and development prospects for MgH2 as hydrogen storage materials.展开更多
As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile...As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.展开更多
In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene p...In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene production by acetonitrile.The accuracy of five prediction methods,UNIFAC(UNIQUAC Functional-group Activity Coefficients),UNIFAC-LL,UNIFAC-LBY,UNIFAC-DMD and COSMO-RS,applied to the butadiene extraction process was verified using partial phase equilibrium data.The results showed that the UNIFAC-DMD method had the highest accuracy in predicting phase equilibrium data for the missing system.COSMO-RS-predicted multiple systems showed good accuracy,and a large number of missing phase equilibrium data were estimated using the UNIFAC-DMD method and COSMO-RS method.The predicted phase equilibrium data were checked for consistency.The NRTL-RK(non-Random Two Liquid-Redlich-Kwong Equation of State)and UNIQUAC thermodynamic models were used to correlate the phase equilibrium data.Industrial device simulations were used to verify the accuracy of the thermodynamic model applied to the butadiene extraction process.The simulation results showed that the average deviations of the simulated results using the correlated thermodynamic model from the actual values were less than 2%compared to that using the commercial simulation software,Aspen Plus and its database.The average deviation was much smaller than that of the simulations using the Aspen Plus database(>10%),indicating that the obtained phase equilibrium data are highly accurate and reliable.The best phase equilibrium data and thermodynamic model parameters for butadiene extraction are provided.This improves the accuracy and reliability of the design,optimization and control of the process,and provides a basis and guarantee for developing a more environmentally friendly and economical butadiene extraction process.展开更多
In recent decades, tokamak discharges with zero total toroidal current have been reported in tokamak experiments, and this is one of the key problems in alternating current(AC) operations.An efficient free-boundary eq...In recent decades, tokamak discharges with zero total toroidal current have been reported in tokamak experiments, and this is one of the key problems in alternating current(AC) operations.An efficient free-boundary equilibrium code is developed to investigate such advanced tokamak discharges with current reversal equilibrium configuration. The calculation results show that the reversal current equilibrium can maintain finite pressure and also has considerable effects on the position of the X-point and the magnetic separatrix shape, and hence also on the position of the strike point on the divertor plates, which is extremely useful for magnetic design, MHD stability analysis, and experimental data analysis etc. for the AC plasma current operation on tokamaks.展开更多
Reconstruction of plasma equilibrium plays an important role in the analysis and simulation of plasma experiments. The kinetic equilibrium reconstruction with pressure and edge current constraints has been employed on...Reconstruction of plasma equilibrium plays an important role in the analysis and simulation of plasma experiments. The kinetic equilibrium reconstruction with pressure and edge current constraints has been employed on EAST tokamak. However, the internal safety factor(q) profile is not accurate. This paper proposes a new way of incorporating q profile constraints into kinetic equilibrium reconstruction. The q profile is yielded from the Polarimeter Interferometer(POINT)reconstruction. Virtual probes containing information on q profile constraints are added to inputs of the kinetic equilibrium reconstruction program to obtain the final equilibrium. The new equilibrium produces a more accurate internal q profile. This improved method would help analyze EAST experiments.展开更多
According to the second law of thermodynamics, as currently understood, any given transit of a system along the reversible path proceeds with a total entropy change equal to zero. The fact that this condition is also ...According to the second law of thermodynamics, as currently understood, any given transit of a system along the reversible path proceeds with a total entropy change equal to zero. The fact that this condition is also the identifier of thermodynamic equilibrium, makes each and every point along the reversible path a state of equilibrium, and the reversible path, as expressed by a noted thermodynamic author, “a dense succession of equilibrium states”. The difficulties with these notions are plural. The fact, for example, that systems need to be forced out of equilibrium via the expenditure of work, would make any spontaneous reversible process a consumer of work, this in opposition to common thermodynamic wisdom that makes spontaneous reversible processes the most efficient transformers of work-producing-potential into actual work. The solution to this and other related impasses is provided by Dialectical Thermodynamics via its previously proved notion assigning a negative entropy change to the energy upgrading process represented by the transformation of heat into work. The said solution is here exemplified with the ideal-gas phase isomerization of butane into isobutane.展开更多
The equilibrium solubility of Rebaudioside A(Reb A)FormⅡin binary mixtures of methanol/ethanol and ethyl acetate was quantitatively determined within the temperature range of 283.15—328.15 K at ambient pressure.The ...The equilibrium solubility of Rebaudioside A(Reb A)FormⅡin binary mixtures of methanol/ethanol and ethyl acetate was quantitatively determined within the temperature range of 283.15—328.15 K at ambient pressure.The experimental findings indicate a positive correlation between the solubility of Reb A(FormⅡ)and both the temperature and the methanol/ethanol content in the solvent system.To describe the solubility data,six distinct models were employed:the modified Apelblat equation,theλh model,the combined nearly ideal binary solvent/Redlich—Kister(CNIBS/R—K)model,the van't HoffJouyban-Acree(VJA)model,the Apelblat-Jouyban-Acree(AJA)model,and the non-random two-liquid(NRTL)model.The combined nearly ideal binary solvent/Redlich—Kister model exhibited the most precise fit for solubility in methanol+ethyl acetate mixtures,reflected by an average relative deviation(ARD)of 0.0011 and a root mean square deviation(RMSD)of 12×10^(-7).Conversely,for ethanol+ethyl acetate mixtures,the modified Apelblat equation provided a superior correlation(ARD=0.0014,RMSD=4×10^(-7)).Furthermore,thermodynamic parameters associated with the dissolution of Reb A(FormⅡ),including enthalpy,entropy,and the Gibbs energy change,were inferred from the data.The findings underscore that the dissolution process is predominantly endothermic across the solvent systems examined.Notably,the entropy changes appear to have a significant influence on the Gibbs free energy associated with the dissolution of Reb A(FormⅡ),suggesting that entropic factors may play a pivotal role in the studied systems.展开更多
The spatiotemporally-nonlocal phenomena in heat conduction become significant but challenging for metamaterials with artificial microstructures.However,the microstructure-dependent heat conduction phenomena are captur...The spatiotemporally-nonlocal phenomena in heat conduction become significant but challenging for metamaterials with artificial microstructures.However,the microstructure-dependent heat conduction phenomena are captured under the hypothesis of spatiotemporally local equilibrium.To capture the microstructure-dependent heat conduction phenomena,a generalized nonlocal irreversible thermodynamics is proposed by removing both the temporally-local and spatially-local equilibrium hypotheses from the classical irreversible thermodynamics.The generalized nonlocal irreversible thermodynamics has intrinsic length and time parameters and thus can provide a thermodynamics basis for the spatiotemporally-nonlocal law of heat conduction.To remove the temporallylocal equilibrium hypothesis,the generalized entropy is assumed to depend not only on the internal energy but also on its first-order and high-order time derivatives.To remove the spatially local equilibrium hypothesis,the thermodynamics flux field in the dissipation function is assumed to relate not only to the thermodynamics force at the reference point but also to the thermodynamics force of the neighboring points.With the developed theoretical framework,the thermodynamics-consistent spatiotemporally-nonlocal models can then be developed for heat transfer problems.Two examples are provided to illustrate the applications of steady-state and transient heat conduction problems.展开更多
Increasing the 1,3,5-trioxane(TOX) concentration in the equilibrated vapor phase of TOX-H_(2)O system has been recognized as a challenge for the azeotrope. Ionic liquids(ILs) were used to improve the relative volatili...Increasing the 1,3,5-trioxane(TOX) concentration in the equilibrated vapor phase of TOX-H_(2)O system has been recognized as a challenge for the azeotrope. Ionic liquids(ILs) were used to improve the relative volatility of TOX to H_(2)O and destroy the azeotrope in the TOX-H2O system. The vapor-liquid equilibrium of TOX-H2O system at 101.3 kPa was studied with the addition of 1-butyl-3-methylimidazolium hydrogen sulfate, 1-hexyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium nitrate, respectively. The results showed that the volatility of TOX increased with the increase in IL dosage. And the volatility of water decreased with the increase in IL dosage. The relative volatility of TOX to H_(2)O was improved with the increase in ILs dosage. The azeotrope could be destroyed with an IL mole fraction of about 0.10. A non-random two-liquid(NRTL) model was successfully used to correlate the experimental data. The interaction parameters were obtained by fitting the experimental data with the model. The results indicated that a strong interaction existed between ILs and water. The strong interaction improved the volatility of TOX and inhibited the volatility of water, and then intensified the relative volatility of TOX to H_(2)O. The results showed that an ILs with strong polarity and hydrophilicity may be a potential additive to improve the TOX concentration in the equilibrated vapor phase.展开更多
We examine thermodynamic phase transition(PT)of the charged Gauss-Bonnet Ad S black hole(BH)by utilizing the shadow radius.In this system,we rescale the corresponding Gauss-Bonnet coefficientαby a factor of 1/(D-4),a...We examine thermodynamic phase transition(PT)of the charged Gauss-Bonnet Ad S black hole(BH)by utilizing the shadow radius.In this system,we rescale the corresponding Gauss-Bonnet coefficientαby a factor of 1/(D-4),and ensure thatαis positive to avoid any singularity problems.The equation derived for the shadow radius indicates that it increases as the event horizon radius increases,making it an independent variable for determining BH temperature.By investigating the PT curve in relation to shadows,we can observe that the shadow radius can be used as an alternative to the event horizon radius in explaining the phenomenon of BH PT.Furthermore,the results indicate that an increase in the parameterαcorresponds to a decrease in the temperature of the BH.By utilizing the relationship between the temperature and the shadow radius,it is possible to obtain the thermal profile of the Gauss-Bonnet AdS BH.It is evident that there is an N-type variation in temperature for pressures P<P_(c).Additionally,as the parameterαincreases,the region covered by shadow expands while the temperature decreases.The utilization of BH shadows as a probe holds immense significance in gaining a deeper understanding of BH thermodynamic behavior.展开更多
Herein,a thermodynamic model aimed at describing deoxidation equilibria in liquid steel was developed.The model provides explicit forms of the activity coefficient of solutes in liquid steel,eliminating the need for t...Herein,a thermodynamic model aimed at describing deoxidation equilibria in liquid steel was developed.The model provides explicit forms of the activity coefficient of solutes in liquid steel,eliminating the need for the minimization of internal Gibbs energy preliminarily when solving deoxidation equilibria.The elimination of internal Gibbs energy minimization is particularly advantageous during the coupling of deoxidation equilibrium calculations with computationally intensive approaches,such as computational fluid dynamics.The model enables efficient calculations through direct embedment of the explicit forms of activity coefficient in the computing code.The proposed thermodynamic model was developed using a quasichemical approach with two key approximations:random mixing of metallic elements(Fe and oxidizing metal) and strong nonrandom pairing of metal and oxygen as nearest neighbors.Through these approximations,the quasichemical approach yielded the activity coefficients of solutes as explicit functions of composition and temperature without requiring the minimization of internal Gibbs energy or the coupling of separate programs.The model was successfully applied in the calculation of deoxidation equilibria of various elements(Al,B,C,Ca,Ce,Cr,La,Mg,Mn,Nb,Si,Ti,V,and Zr).The limitations of the model arising from these assumptions were also discussed.展开更多
Ground-based microwave radiometers(MWRs)operating in the K-and V-bands(20–60 GHz)can help us obtain temperature and humidity profiles in the troposphere.Aside from some soundings from local meteorological observatori...Ground-based microwave radiometers(MWRs)operating in the K-and V-bands(20–60 GHz)can help us obtain temperature and humidity profiles in the troposphere.Aside from some soundings from local meteorological observatories,the tropospheric atmosphere over the Tibetan Plateau(TP)has never been continuously observed.As part of the Chinese Second Tibetan Plateau Scientific Expedition and Research Program(STEP),the Tibetan Plateau Atmospheric Profile(TPPROFILE)project aims to construct a comprehensive MWR troposphere observation network to study the synoptic processes and environmental changes on the TP.This initiative has collected three years of data from the MWR network.This paper introduces the data information,the data quality,and data downloading.Some applications of the data obtained from these MWRs were also demonstrated.Our comparisons of MWR against the nearest radiosonde observation demonstrate that the TP-PROFILE MWR system is adequate for monitoring the thermal and moisture variability of the troposphere over the TP.The continuous temperature and moisture profiles derived from the MWR data provide a unique perspective on the evolution of the thermodynamic structure associated with the heating of the TP.The TP-PROFILE project reveals that the low-temporal resolution instruments are prone to large uncertainties in their vapor estimation in the mountain valleys on the TP.展开更多
Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of th...Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.展开更多
Mg-based hydrides are too stable and the kinetics of hydrogen absorption and desorption is not satisfactory.An efficient way to improve these shortcomings is to employ reactive ball milling to synthesize the nanocompo...Mg-based hydrides are too stable and the kinetics of hydrogen absorption and desorption is not satisfactory.An efficient way to improve these shortcomings is to employ reactive ball milling to synthesize the nanocomposite materials of Mg and additives.In this experiment,TiF_(3)was selected as an additive,and the mechanical milling method was employed to prepare the experimental alloys.The alloys used in this experiment were the as-cast Ce_(5)Mg_(85)Ni_(10),as-milled Ce_(5)Mg_(85)Ni_(10)and Ce_(5)Mg_(85)Ni_(10)+3 wt.%TiF3.The phase transformation,structural evolution,isothermal and non-isothermal hydrogenation and dehydrogenation performances of the alloys were inspected by XRD,SEM,TEM,Sievert apparatus,DSC and TGA.It revealed that nanocrystalline appeared in the as-milled samples.Compared with the as-cast alloy,ball milling made the particle dimension and grain size decrease dramatically and the defect density increase significantly.The addition of TiF_(3)made the surface of ball milling alloy particles markedly coarser and more irregular.Ball milling and adding TiF_(3)distinctly improved the activation and kinetics of the alloys.Moreover,ball milling along with TiF_(3)can decrease the onset dehydrogenation temperature of Mg-based hydrides and slightly ameliorate their thermodynamics.展开更多
In this paper, we study the flocking behavior of a thermodynamic Cucker–Smale model with local velocity interactions. Using the spectral gap of a connected stochastic matrix, together with an elaborate estimate on pe...In this paper, we study the flocking behavior of a thermodynamic Cucker–Smale model with local velocity interactions. Using the spectral gap of a connected stochastic matrix, together with an elaborate estimate on perturbations of a linearized system, we provide a sufficient framework in terms of initial data and model parameters to guarantee flocking. Moreover, it is shown that the system achieves a consensus at an exponential rate.展开更多
基金This work is supported by the National Natural Science Foundation of China(No.52176048,No.U1909216,No.51876194)the General Scientific Research Projects of the Department of Education of Zhejiang Province(No.Y202147969)the Key Research and Development Program of Zhejiang Province(No.2022C01115).
文摘The hydrotreater system heat exchanger is one of the main pieces of heat exchange equipment in petrochemical enterprises.In recent years,oil resources have shown a deterioration trend of high sulfur and high acid content,with corrosion risk being prominent in oil processing.Taking the multi-medium flow corrosion risk of the hydrotreater heat exchanger pipeline in a petrochemical enterprise as the research object,based on the parameter characteristics of corrosive NH_(3) and HCl media under a high-temperature and high-pressure environment,the ammonium salt crystallization and deposition mechanism under multi-phase flow is revealed.The thermodynamic equilibrium curve is modified based on the thermodynamic principle and fugacity coefficient variation,and the prediction model of ammonium chloride crystallization in hydrotreater heat exchanger under high temperature and high pressure is constructed according to the modification.This study uses the mixture model,the flow-thermal coupling method,and the discrete phase model method to carry out the numerical simulation of multiphase flow and the numerical prediction of particle distribution characteristics in the heat exchanger pipeline of the hydrotreater heat exchange equipment,so as to realize the quantitative prediction of the particle crystallization deposition distribution in the pipeline.The results show that with the decrease of temperature,the crystallization occurs first on both sides of the center of the tube bundle,and more crystallization occurs in the lower half of the U-shaped tube,which may seriously lead to problems such as pipe blockage and under-deposit corrosion.
基金supported by the National Natural Science Foundation of China (NSFC)(62222308, 62173181, 62073171, 62221004)the Natural Science Foundation of Jiangsu Province (BK20200744, BK20220139)+3 种基金Jiangsu Specially-Appointed Professor (RK043STP19001)the Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)1311 Talent Plan of Nanjing University of Posts and Telecommunicationsthe Fundamental Research Funds for the Central Universities (30920032203)。
文摘This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achieve the optimization o players' objective functions while restricting their actions within required non-empty, convex and compact domains. In addition, a leader-following consensus protocol, in which quantized informa tion flows are utilized, is employed for information sharing among players. More specifically, logarithmic quantizers and uniform quantizers are investigated under both undirected and connected communication graphs and strongly connected digraphs, respec tively. Through Lyapunov stability analysis, it is shown that play ers' actions can be steered to a neighborhood of the Nash equilib rium with logarithmic and uniform quantizers, and the quanti fied convergence error depends on the parameter of the quan tizer for both undirected and directed cases. A numerical exam ple is given to verify the theoretical results.
基金supported by the Yunnan Science and Technology Leading Talent Project(No.202305AB350005)National Science Foundation for Young Scientists of China(No.51404118).
文摘The flotation of complex solid–liquid multiphase systems involve interactions among multiple components,the core problem facing flotation theory.Meanwhile,the combined use of multicomponent flotation reagents to improve mineral flotation has become an important issue in studies on the efficient use of refractory mineral resources.However,studying the flotation of complex solid–liquid systems is extremely difficult,and no systematic theory has been developed to date.In addition,the physical mechanism associated with combining reagents to improve the flotation effect has not been unified,which limits the development of flotation theory and the progress of flotation technology.In this study,we applied theoretical thermodynamics to a solid–liquid flotation system and used changes in the entropy and Gibbs free energy of the reagents adsorbed on the mineral surface to establish thermodynamic equilibrium equations that de-scribe interactions among various material components while also introducing adsorption equilibrium constants for the flotation reagents adsorbed on the mineral surface.The homogenization effect on the mineral surface in pulp solution was determined using the chemical potentials of the material components of the various mineral surfaces required to maintain balance.The flotation effect can be improved through synergy among multicomponent flotation reagents;its physical essence is the thermodynamic law that as the number of compon-ents of flotation reagents on the mineral surface increases,the surface adsorption entropy change increases,and the Gibbs free energy change of adsorption decreases.According to the results obtained using flotation thermodynamics theory,we established high-entropy flotation theory and a technical method in which increasing the types of flotation reagents adsorbed on the mineral surface,increasing the adsorption entropy change of the flotation reagents,decreasing the Gibbs free energy change,and improving the adsorption efficiency and stability of the flotation reagents improves refractory mineral flotation.
基金supported in part by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA27030100)National Natural Science Foundation of China(72293575, 11832001)。
文摘The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainly concentrate on the cooperative pursuit of multiple players in two-dimensional pursuit-evasion games. However, these approaches can hardly be applied to practical situations where players usually move in three-dimensional space with a three-degree-of-freedom control. In this paper,we make the first attempt to investigate the equilibrium strategy of the realistic pursuit-evasion game, in which the pursuer follows a three-degree-of-freedom control, and the evader moves freely. First, we describe the pursuer's three-degree-of-freedom control and the evader's relative coordinate. We then rigorously derive the equilibrium strategy by solving the retrogressive path equation according to the Hamilton-Jacobi-Bellman-Isaacs(HJBI) method, which divides the pursuit-evasion process into the navigation and acceleration phases. Besides, we analyze the maximum allowable speed for the pursuer to capture the evader successfully and provide the strategy with which the evader can escape when the pursuer's speed exceeds the threshold. We further conduct comparison tests with various unilateral deviations to verify that the proposed strategy forms a Nash equilibrium.
基金support from the European Space Agency(ESA)PRODEX(PROgramme de Développement d’Expériences scientifiques)Project mission(No.PEA4000134960)Partial funding was provided by the Romanian Ministry of Research,Innovation and Digitalization under Romanian National Core Program LAPLAS VII(Contract No.30N/2023)+2 种基金the Belgian Solar-Terrestrial Centre of Excellencesupported by the project Belgian Research Action through Interdisciplinary Networks(BRAIN-BE)2.0(Grant No.B2/223/P1/PLATINUM)funded by the Belgian Office for Research(BELSPO)partially supported by a grant from the Romanian Ministry of Education and Research(CNCS-UEFISCDI,Project No.PN-III-P1-1.1TE-2021-0102)。
文摘We derived the properties of the terrestrial magnetopause(MP)from two modeling approaches,one global–fluid,the other local–kinetic,and compared the results with data collected in situ by the Magnetospheric Multiscale 2(MMS2)spacecraft.We used global magnetohydrodynamic(MHD)simulations of the Earth’s magnetosphere(publicly available from the NASA-CCMC[National Aeronautics and Space Administration–Community Coordinated Modeling Center])and local Vlasov equilibrium models(based on kinetic models for tangential discontinuities)to extract spatial profiles of the plasma and field variables at the Earth’s MP.The global MHD simulations used initial solar wind conditions extracted from the OMNI database at the time epoch when the MMS2 observes the MP.The kinetic Vlasov model used asymptotic boundary conditions derived from the same in situ MMS measurements upstream or downstream of the MP.The global MHD simulations provide a three-dimensional image of the magnetosphere at the time when the MMS2 crosses the MP.The Vlasov model provides a one-dimensional local view of the MP derived from first principles of kinetic theory.The MMS2 experimental data also serve as a reference for comparing and validating the numerical simulations and modeling.We found that the MP transition layer formed in global MHD simulations was generally localized closer to the Earth(roughly by one Earth radius)from the position of the real MP observed by the MMS.We also found that the global MHD simulations overestimated the thickness of the MP transition by one order of magnitude for three analyzed variables:magnetic field,density,and tangential speed.The MP thickness derived from the local Vlasov equilibrium was consistent with observations for all three of these variables.The overestimation of density in the Vlasov equilibrium was reduced compared with the global MHD solutions.We discuss our results in the context of future SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)campaigns for observing the Earth’s MP.
基金supported by National Key Research and Development Program of China(2021YFB4000604)National Natural Science Foundation of China(52271220)111 Project(B12015)and the Fundamental Research Funds for the Central Universities.
文摘Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen energy lies in the development of high-performance hydrogen storage materials.Magnesium-based hydrogen storage materials exhibit remarkable advantages,including high hydrogen storage density,cost-effectiveness,and abundant magnesium resources,making them highly promising for the hydrogen energy sector.Nonetheless,practical applications of magnesium hydride for hydrogen storage face significant challenges,primarily due to their slow kinetics and stable thermodynamic properties.Herein,we briefly summarize the thermodynamic and kinetic properties of MgH2,encompassing strategies such as alloying,nanoscaling,catalyst doping,and composite system construction to enhance its hydrogen storage performance.Notably,nanoscaling and catalyst doping have emerged as more effective modification strategies.The discussion focuses on the thermodynamic changes induced by nanoscaling and the kinetic enhancements resulting from catalyst doping.Particular emphasis lies in the synergistic improvement strategy of incorporating nanocatalysts with confinement materials,and we revisit typical works on the multi-strategy optimization of MgH2.In conclusion,we conduct an analysis of outstanding challenges and issues,followed by presenting future research and development prospects for MgH2 as hydrogen storage materials.
基金supported by the National Key R&D Program of China(2018YFC1900500)the Graduate Scientific Research and Innovation Foundation of Chongqing,China(Grant No.CYB20002).
文摘As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.
基金supported by the National Natural Science Foundation of China(22178190)。
文摘In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene production by acetonitrile.The accuracy of five prediction methods,UNIFAC(UNIQUAC Functional-group Activity Coefficients),UNIFAC-LL,UNIFAC-LBY,UNIFAC-DMD and COSMO-RS,applied to the butadiene extraction process was verified using partial phase equilibrium data.The results showed that the UNIFAC-DMD method had the highest accuracy in predicting phase equilibrium data for the missing system.COSMO-RS-predicted multiple systems showed good accuracy,and a large number of missing phase equilibrium data were estimated using the UNIFAC-DMD method and COSMO-RS method.The predicted phase equilibrium data were checked for consistency.The NRTL-RK(non-Random Two Liquid-Redlich-Kwong Equation of State)and UNIQUAC thermodynamic models were used to correlate the phase equilibrium data.Industrial device simulations were used to verify the accuracy of the thermodynamic model applied to the butadiene extraction process.The simulation results showed that the average deviations of the simulated results using the correlated thermodynamic model from the actual values were less than 2%compared to that using the commercial simulation software,Aspen Plus and its database.The average deviation was much smaller than that of the simulations using the Aspen Plus database(>10%),indicating that the obtained phase equilibrium data are highly accurate and reliable.The best phase equilibrium data and thermodynamic model parameters for butadiene extraction are provided.This improves the accuracy and reliability of the design,optimization and control of the process,and provides a basis and guarantee for developing a more environmentally friendly and economical butadiene extraction process.
基金supported by National Natural Science Foundation of China (No. 12075276)partly by the Comprehensive Research Facility for Fusion Technology Program of China (No. 2018000052-73-01-001228)。
文摘In recent decades, tokamak discharges with zero total toroidal current have been reported in tokamak experiments, and this is one of the key problems in alternating current(AC) operations.An efficient free-boundary equilibrium code is developed to investigate such advanced tokamak discharges with current reversal equilibrium configuration. The calculation results show that the reversal current equilibrium can maintain finite pressure and also has considerable effects on the position of the X-point and the magnetic separatrix shape, and hence also on the position of the strike point on the divertor plates, which is extremely useful for magnetic design, MHD stability analysis, and experimental data analysis etc. for the AC plasma current operation on tokamaks.
基金supported by National Key R&D Program of China(Nos.2019YFE03040004 and 2017YFE0300404)supported by Comprehensive Research Facility for Fusion Technology Program of China(No.2018000052-73-01-001228)。
文摘Reconstruction of plasma equilibrium plays an important role in the analysis and simulation of plasma experiments. The kinetic equilibrium reconstruction with pressure and edge current constraints has been employed on EAST tokamak. However, the internal safety factor(q) profile is not accurate. This paper proposes a new way of incorporating q profile constraints into kinetic equilibrium reconstruction. The q profile is yielded from the Polarimeter Interferometer(POINT)reconstruction. Virtual probes containing information on q profile constraints are added to inputs of the kinetic equilibrium reconstruction program to obtain the final equilibrium. The new equilibrium produces a more accurate internal q profile. This improved method would help analyze EAST experiments.
文摘According to the second law of thermodynamics, as currently understood, any given transit of a system along the reversible path proceeds with a total entropy change equal to zero. The fact that this condition is also the identifier of thermodynamic equilibrium, makes each and every point along the reversible path a state of equilibrium, and the reversible path, as expressed by a noted thermodynamic author, “a dense succession of equilibrium states”. The difficulties with these notions are plural. The fact, for example, that systems need to be forced out of equilibrium via the expenditure of work, would make any spontaneous reversible process a consumer of work, this in opposition to common thermodynamic wisdom that makes spontaneous reversible processes the most efficient transformers of work-producing-potential into actual work. The solution to this and other related impasses is provided by Dialectical Thermodynamics via its previously proved notion assigning a negative entropy change to the energy upgrading process represented by the transformation of heat into work. The said solution is here exemplified with the ideal-gas phase isomerization of butane into isobutane.
基金supported by the National Key Research and Development Program of China(2021YFC2103800)the National Natural Science Foundation of China(U21A20301)the Research Funds of Institute of Zhejiang University-Quzhou(IZQ2022RCZX004 and IZQ2021RCZX015)。
文摘The equilibrium solubility of Rebaudioside A(Reb A)FormⅡin binary mixtures of methanol/ethanol and ethyl acetate was quantitatively determined within the temperature range of 283.15—328.15 K at ambient pressure.The experimental findings indicate a positive correlation between the solubility of Reb A(FormⅡ)and both the temperature and the methanol/ethanol content in the solvent system.To describe the solubility data,six distinct models were employed:the modified Apelblat equation,theλh model,the combined nearly ideal binary solvent/Redlich—Kister(CNIBS/R—K)model,the van't HoffJouyban-Acree(VJA)model,the Apelblat-Jouyban-Acree(AJA)model,and the non-random two-liquid(NRTL)model.The combined nearly ideal binary solvent/Redlich—Kister model exhibited the most precise fit for solubility in methanol+ethyl acetate mixtures,reflected by an average relative deviation(ARD)of 0.0011 and a root mean square deviation(RMSD)of 12×10^(-7).Conversely,for ethanol+ethyl acetate mixtures,the modified Apelblat equation provided a superior correlation(ARD=0.0014,RMSD=4×10^(-7)).Furthermore,thermodynamic parameters associated with the dissolution of Reb A(FormⅡ),including enthalpy,entropy,and the Gibbs energy change,were inferred from the data.The findings underscore that the dissolution process is predominantly endothermic across the solvent systems examined.Notably,the entropy changes appear to have a significant influence on the Gibbs free energy associated with the dissolution of Reb A(FormⅡ),suggesting that entropic factors may play a pivotal role in the studied systems.
基金Project supported by the National Key Research and Development Program of China(No.2021YFB1714600)the National Natural Science Foundation of China(No.52175095)the Young Top-Notch Talent Cultivation Program of Hubei Province of China。
文摘The spatiotemporally-nonlocal phenomena in heat conduction become significant but challenging for metamaterials with artificial microstructures.However,the microstructure-dependent heat conduction phenomena are captured under the hypothesis of spatiotemporally local equilibrium.To capture the microstructure-dependent heat conduction phenomena,a generalized nonlocal irreversible thermodynamics is proposed by removing both the temporally-local and spatially-local equilibrium hypotheses from the classical irreversible thermodynamics.The generalized nonlocal irreversible thermodynamics has intrinsic length and time parameters and thus can provide a thermodynamics basis for the spatiotemporally-nonlocal law of heat conduction.To remove the temporallylocal equilibrium hypothesis,the generalized entropy is assumed to depend not only on the internal energy but also on its first-order and high-order time derivatives.To remove the spatially local equilibrium hypothesis,the thermodynamics flux field in the dissipation function is assumed to relate not only to the thermodynamics force at the reference point but also to the thermodynamics force of the neighboring points.With the developed theoretical framework,the thermodynamics-consistent spatiotemporally-nonlocal models can then be developed for heat transfer problems.Two examples are provided to illustrate the applications of steady-state and transient heat conduction problems.
基金supported by the fundamental research funds for the central universities(2022SCUH0041,SCU2023D012).
文摘Increasing the 1,3,5-trioxane(TOX) concentration in the equilibrated vapor phase of TOX-H_(2)O system has been recognized as a challenge for the azeotrope. Ionic liquids(ILs) were used to improve the relative volatility of TOX to H_(2)O and destroy the azeotrope in the TOX-H2O system. The vapor-liquid equilibrium of TOX-H2O system at 101.3 kPa was studied with the addition of 1-butyl-3-methylimidazolium hydrogen sulfate, 1-hexyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium nitrate, respectively. The results showed that the volatility of TOX increased with the increase in IL dosage. And the volatility of water decreased with the increase in IL dosage. The relative volatility of TOX to H_(2)O was improved with the increase in ILs dosage. The azeotrope could be destroyed with an IL mole fraction of about 0.10. A non-random two-liquid(NRTL) model was successfully used to correlate the experimental data. The interaction parameters were obtained by fitting the experimental data with the model. The results indicated that a strong interaction existed between ILs and water. The strong interaction improved the volatility of TOX and inhibited the volatility of water, and then intensified the relative volatility of TOX to H_(2)O. The results showed that an ILs with strong polarity and hydrophilicity may be a potential additive to improve the TOX concentration in the equilibrated vapor phase.
基金Project supported by the National Natural Science Foundation of China (Grant No.11903025)the starting fund of China West Normal University (Grant No.18Q062)+2 种基金the Sichuan Youth Science and Technology Innovation Research Team (Grant No.21CXTD0038)the Chongqing Science and Technology Bureau (Grant No.cstc2022ycjh-bgzxm0161)the Natural Science Foundation of Sichuan Province (Grant No.2022NSFSC1833)。
文摘We examine thermodynamic phase transition(PT)of the charged Gauss-Bonnet Ad S black hole(BH)by utilizing the shadow radius.In this system,we rescale the corresponding Gauss-Bonnet coefficientαby a factor of 1/(D-4),and ensure thatαis positive to avoid any singularity problems.The equation derived for the shadow radius indicates that it increases as the event horizon radius increases,making it an independent variable for determining BH temperature.By investigating the PT curve in relation to shadows,we can observe that the shadow radius can be used as an alternative to the event horizon radius in explaining the phenomenon of BH PT.Furthermore,the results indicate that an increase in the parameterαcorresponds to a decrease in the temperature of the BH.By utilizing the relationship between the temperature and the shadow radius,it is possible to obtain the thermal profile of the Gauss-Bonnet AdS BH.It is evident that there is an N-type variation in temperature for pressures P<P_(c).Additionally,as the parameterαincreases,the region covered by shadow expands while the temperature decreases.The utilization of BH shadows as a probe holds immense significance in gaining a deeper understanding of BH thermodynamic behavior.
文摘Herein,a thermodynamic model aimed at describing deoxidation equilibria in liquid steel was developed.The model provides explicit forms of the activity coefficient of solutes in liquid steel,eliminating the need for the minimization of internal Gibbs energy preliminarily when solving deoxidation equilibria.The elimination of internal Gibbs energy minimization is particularly advantageous during the coupling of deoxidation equilibrium calculations with computationally intensive approaches,such as computational fluid dynamics.The model enables efficient calculations through direct embedment of the explicit forms of activity coefficient in the computing code.The proposed thermodynamic model was developed using a quasichemical approach with two key approximations:random mixing of metallic elements(Fe and oxidizing metal) and strong nonrandom pairing of metal and oxygen as nearest neighbors.Through these approximations,the quasichemical approach yielded the activity coefficients of solutes as explicit functions of composition and temperature without requiring the minimization of internal Gibbs energy or the coupling of separate programs.The model was successfully applied in the calculation of deoxidation equilibria of various elements(Al,B,C,Ca,Ce,Cr,La,Mg,Mn,Nb,Si,Ti,V,and Zr).The limitations of the model arising from these assumptions were also discussed.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant Nos.2019QZKK0103 and 2019QZKK0105)the National Natural Science Foundation of China(Grant Nos.41975009,42230610,41840650 and U2242208)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Wang Binbin,2022069).
文摘Ground-based microwave radiometers(MWRs)operating in the K-and V-bands(20–60 GHz)can help us obtain temperature and humidity profiles in the troposphere.Aside from some soundings from local meteorological observatories,the tropospheric atmosphere over the Tibetan Plateau(TP)has never been continuously observed.As part of the Chinese Second Tibetan Plateau Scientific Expedition and Research Program(STEP),the Tibetan Plateau Atmospheric Profile(TPPROFILE)project aims to construct a comprehensive MWR troposphere observation network to study the synoptic processes and environmental changes on the TP.This initiative has collected three years of data from the MWR network.This paper introduces the data information,the data quality,and data downloading.Some applications of the data obtained from these MWRs were also demonstrated.Our comparisons of MWR against the nearest radiosonde observation demonstrate that the TP-PROFILE MWR system is adequate for monitoring the thermal and moisture variability of the troposphere over the TP.The continuous temperature and moisture profiles derived from the MWR data provide a unique perspective on the evolution of the thermodynamic structure associated with the heating of the TP.The TP-PROFILE project reveals that the low-temporal resolution instruments are prone to large uncertainties in their vapor estimation in the mountain valleys on the TP.
基金supported by the Preparation and Characterization of Fogging Agents,Cooperative Project of China(Grant No.1900030040)Preparation and Test of Fogging Agents,Cooperative Project of China(Grant No.2200030085)。
文摘Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.
基金the National Natural Science Foundation of China(Nos.51871125,51761032,52001005 and 51731002)Major Science and Technology Innovation Projects in Shandong Province(No.2019JZZY010320)for financial support of the work.
文摘Mg-based hydrides are too stable and the kinetics of hydrogen absorption and desorption is not satisfactory.An efficient way to improve these shortcomings is to employ reactive ball milling to synthesize the nanocomposite materials of Mg and additives.In this experiment,TiF_(3)was selected as an additive,and the mechanical milling method was employed to prepare the experimental alloys.The alloys used in this experiment were the as-cast Ce_(5)Mg_(85)Ni_(10),as-milled Ce_(5)Mg_(85)Ni_(10)and Ce_(5)Mg_(85)Ni_(10)+3 wt.%TiF3.The phase transformation,structural evolution,isothermal and non-isothermal hydrogenation and dehydrogenation performances of the alloys were inspected by XRD,SEM,TEM,Sievert apparatus,DSC and TGA.It revealed that nanocrystalline appeared in the as-milled samples.Compared with the as-cast alloy,ball milling made the particle dimension and grain size decrease dramatically and the defect density increase significantly.The addition of TiF_(3)made the surface of ball milling alloy particles markedly coarser and more irregular.Ball milling and adding TiF_(3)distinctly improved the activation and kinetics of the alloys.Moreover,ball milling along with TiF_(3)can decrease the onset dehydrogenation temperature of Mg-based hydrides and slightly ameliorate their thermodynamics.
文摘In this paper, we study the flocking behavior of a thermodynamic Cucker–Smale model with local velocity interactions. Using the spectral gap of a connected stochastic matrix, together with an elaborate estimate on perturbations of a linearized system, we provide a sufficient framework in terms of initial data and model parameters to guarantee flocking. Moreover, it is shown that the system achieves a consensus at an exponential rate.