期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Thermoelectric Stirling Engine (TEG-Stirling Engine) Based on the Analysis of Thermomechanical Dynamics (TMD)
1
作者 Hiroshi Uechi Lisa Uechi Schun T. Uechi 《Journal of Applied Mathematics and Physics》 2024年第7期2386-2399,共14页
The thermoelectric energy conversion technique by employing the Disk-Magnet Electromagnetic Induction (DM-EMI) is examined in detail, and possible applications to heat engines as one of the energy-harvesting technolog... The thermoelectric energy conversion technique by employing the Disk-Magnet Electromagnetic Induction (DM-EMI) is examined in detail, and possible applications to heat engines as one of the energy-harvesting technologies are discussed. The idea is induced by the analysis of thermomechanical dynamics (TMD) for a nonequilibrium irreversible thermodynamic system of heat engines, such as a drinking bird and a low temperature Stirling engine, resulting in thermoelectric energy generation different from conventional heat engines. The current thermoelectric energy conversion with DM-EMI can be applied to wide ranges of machines and temperature differences. The mechanism of DM-EMI energy converter is categorized as the axial flux generator (AFG), which is the reason why the technology is applicable to sensitive thermoelectric conversions. On the other hand, almost all the conventional turbines use the radius flux generator to extract huge electric power, which uses the radial flux generator (RFG). The axial flux generator is helpful for a low mechanoelectric energy conversion and activations of waste heat from macroscopic energy generators such as wind, geothermal, thermal, nuclear power plants and heat-dissipation lines. The technique of DM-EMI will contribute to solving environmental problems to maintain clean and sustainable energy as one of the energy harvesting technologies. 展开更多
关键词 A Low Temperature Stirling Engine Axial Flux Generator Thermomechanical Dynamics (TMD) thermoelectric Energy conversions
下载PDF
The Method of Thermoelectric Energy Generations Based on the Axial and Radial Flux Electromagnetic Inductions*
2
作者 Hiroshi Uechi Lisa Uechi Schun T. Uechi 《World Journal of Engineering and Technology》 2024年第3期715-730,共16页
The traditional thermoelectric energy conversion techniques are explained in detail in terms of the axial flux electromagnetic (AFE) and the radial flux electromagnetic (RFE) inductions, and applications to heat engin... The traditional thermoelectric energy conversion techniques are explained in detail in terms of the axial flux electromagnetic (AFE) and the radial flux electromagnetic (RFE) inductions, and applications to heat engines for the energy-harvesting technologies are discussed. The idea is induced by the analysis of thermomechanical dynamics (TMD) for a nonequilibrium irreversible thermodynamic system of heat engines (a drinking bird, a low temperature Stirling engine), resulting in thermoelectric energy generation different from conventional heat engines. The mechanism of thermoelectric energy conversion can be categorized as the axial flux generator (AFG) and the radial flux generator (RFG). The axial flux generator is helpful for low mechanoelectric energy conversion and activations of waste heat from macroscopic energy generators, such as wind, geothermal, thermal, nuclear power plants and heat-dissipation lines, and the device contributes to solving environmental problems to maintain clean and sustainable energy as one of the energy harvesting technologies. 展开更多
关键词 Axial Flux and Radial Flux Generators Thermomechanical Dynamics (TMD) thermoelectric Energy conversions
下载PDF
Enhanced Ion-Selective Diffusion Achieved by Supramolecular Interaction for High Thermovoltage and Thermal Stability
3
作者 Jiale Ke Xing Zhao +4 位作者 Jie Yang Kai Ke Yu Wang Mingbo Yang Wei Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期200-208,共9页
Thermoelectric(TE)generators capable of converting thermal energy into applicable electricity have gained great popularity among emerging energy conversion technologies.Biopolymer-based ionic thermoelectric(i-TE)mater... Thermoelectric(TE)generators capable of converting thermal energy into applicable electricity have gained great popularity among emerging energy conversion technologies.Biopolymer-based ionic thermoelectric(i-TE)materials are promising candidates for energy conversion systems because of their wide sources,innocuity,and low manufacturing cost.However,common physically crosslinked biopolymer gels induced by single hydrogen bonding or hydrophobic interaction suffer from low differential thermal voltage and poor thermodynamic stability.Here,we develop a novel i-TE gel with supramolecular structures through multiple noncovalent interactions between ionic liquids(ILs)and gelatin molecular chains.The thermopower and thermoelectric power factor of the ionic gels are as high as 2.83 mV K-1 and 18.33μW m^(-1)K^(-2),respectively.The quasi-solid-state gelatin-[EMIM]DCA i-TE cells achieve ultrahigh 2 h output energy density(E_(2h)=9.9 mJ m^(-2))under an optimal temperature range.Meanwhile,the remarkable stability of the supramolecular structure provides the i-TE hydrogels with a thermal stability of up to 80℃.It breaks the limitation that biopolymer-based i-TE gels can only be applied in the low temperature range and enables biopolymer-based i-TE materials to pursue better performance in a higher temperature range. 展开更多
关键词 biopolymer gel ionic liquid multiple noncovalent interactions supramolecular structure thermoelectric conversion
下载PDF
Fabrication and performance evaluation of the thermoelectric generation and performance measuring system
4
作者 王禹 Zheng Wenbo Wu Zhifei 《High Technology Letters》 EI CAS 2008年第2期199-204,共6页
A novel thennoelectric generating and performance measuring system (TGPMS) was designed and fabricated. TGPMS can not only achieve the function of thennoelectric generation, but also measure the thennoelectric perfo... A novel thennoelectric generating and performance measuring system (TGPMS) was designed and fabricated. TGPMS can not only achieve the function of thennoelectric generation, but also measure the thennoelectric performance parameters of the bismuth-telluride-based thennoelectric device accurately. These thennoelectric performance parameters mainly include the dependence of the Seebeck coefficient of the thennoelectric device on the device's temperature in the low temperature range (about 40 ~ 190~C ), and the dependence of the power output and thermoelectric conversion efficiency on the temperature dif- ference or output load. With the optimum load, the optimal value of the power output is 3.39W when the temperature difference reaches 231.2~C, and the optimal value of the conversion efficiency is 3.22% when the temperature difference reaches 208.9~C. TGPMS provides an experimental foundation for the application of the thennoelectric generators in the space field. 展开更多
关键词 thermoelectric generation performance measuring power output thermoelectric conversion efficiency
下载PDF
A Solar Thermoelectric Nanofluidic Device for Solar Thermal Energy Harvesting 被引量:1
5
作者 Zhong-Qiu Li Zeng-Qiang Wu +2 位作者 Xin-Lei Ding Ming-Yang Wu Xing-Hua Xia 《CCS Chemistry》 CAS 2021年第7期2174-2182,共9页
Harvesting the low-grade(<100°C)solar thermal energy with ionic heat-to-electricity conversion shows great promise but low efficiencies due to the challenges encountered in regulating ionic thermophoretic mobi... Harvesting the low-grade(<100°C)solar thermal energy with ionic heat-to-electricity conversion shows great promise but low efficiencies due to the challenges encountered in regulating ionic thermophoretic mobilities.Here,we used nanochannels to regulate thermal-driven ion transport properties and described a solar thermoelectric nanofluidic device(STEND). 展开更多
关键词 solar thermal energy NANOCHANNEL surface plasmon resonance charge separation thermoelectric conversion
原文传递
Effects of nanostructure on clean energy: big solutions gained from small features 被引量:6
6
作者 Jinyan Xiong Chao Han +1 位作者 Zhen Li Shixue Dou 《Science Bulletin》 SCIE EI CAS CSCD 2015年第24期2083-2090,共8页
The increasing energy consumption and environmental concerns have driven the development of costeffective, high-efficiency clean energy. Advanced functional nanomaterials and relevant nanotechnologies are playing a cr... The increasing energy consumption and environmental concerns have driven the development of costeffective, high-efficiency clean energy. Advanced functional nanomaterials and relevant nanotechnologies are playing a crucial role and showing promise in resolving some energy issues. In this view, we focus on recent advances of functional nanomaterials in clean energy applications, including solar energy conversion, water splitting, photodegradation, electrochemical energy conversion and storage, and thermoelectric conversion, which have attracted considerable interests in the regime of clean energy. 展开更多
关键词 nanostructures Photocatalysis Solar energy -Electrochemical energy conversion and storage thermoelectric conversion
原文传递
Preparation and electronic characteristics of anionic perylene bisimide films 被引量:1
7
作者 Wenqiang Zhang Qinglin Jiang +7 位作者 Jiadong Zhou Dehua Hu Xuehong Zhou Weitao Ma Muddasir Hanif Zengqi Xie Linlin Liu Yuguang Ma 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第10期1334-1339,共6页
Neutral perylene bisimides(PBI) are well-known n-type organic semiconductors, with number of challenging electronic properties in their neutral and reduced states. We report the characteristic electronic properties of... Neutral perylene bisimides(PBI) are well-known n-type organic semiconductors, with number of challenging electronic properties in their neutral and reduced states. We report the characteristic electronic properties of PBI anionic films. We unexpectedly discovered that pristine PBI dianion film showed p-type character, while oxidized dianion film(dominant neutral state with few radical anions) showed normal n-type semiconductor character based on Seebeck effect measurements. Both kinds of films exhibit high electrical conductivity with a potential for thermoelectric applications. The mechanism of polarity reversal is proposed. 展开更多
关键词 dianion/radical anion elelctrical conductivity perylene bisimide p-type thermoelectric conversion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部