期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Purification and Characterization of a Novel Thermostable Chitinase from Thermomyces lanuginosus SY2 and Cloning of Its Encoding Gene 被引量:5
1
作者 GUO Run-fang SHI Bao-sheng +2 位作者 LI Duo-chua MA Wen WEI Qing 《Agricultural Sciences in China》 CAS CSCD 2008年第12期1458-1465,共8页
A novel thermostable extracellular chitinase was purified from the culture filtrate of Thermomyces lanuginosus SY2 by using diethylaminoethyl Sepharose chromatography and Phenyl-Sepharose chromatography. The molecular... A novel thermostable extracellular chitinase was purified from the culture filtrate of Thermomyces lanuginosus SY2 by using diethylaminoethyl Sepharose chromatography and Phenyl-Sepharose chromatography. The molecular size of the purified chitinase was estimated to be 48 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The chitinase exhibited optimum catalytic activity at pH 4.5 and 55℃. The enzyme was stable at 50℃, and its half-life time at 65℃ was 25 rain. The thermostable chitinase was obtained with 60% of the full activity, when it was incubated in the buffer (pH 2.5). The enzyme showed the unique properties for thermostability and pH stability since it was one of the most thermostable chitinases so far isolated in fungi. Ca^2+, Ba^2+, Na^+, and K^+ enhanced the enzyme activity, whereas Fe^2+, Ag^+, Hg^2+, and ethylene diamine tetraacetic acid caused obvious inhibition. The N-terminal amino acids were AQGYLSVQYFVNWAI. Degenerate primers based on the N-terminal sequences of purified chitinase and a cDNA fragment encoding the chitinase gene were obtained through reverse transcriptase-polymerase chain reaction amplication. The RACE was used to generate full-length cDNA clones. The cDNA of chit contained an open reading frame of 1 326 bp encoding 442 amino acids. The gene chit has been registered in GenBank with accession number DQ092332. The alignment results of putative amino acid sequence showed the lower similarity to other chitinases in family-18 except for the catalytic domain containing two conserved motifs related with catalytic activity of chitinase. 展开更多
关键词 thermomyces lanuginosus SY2 thermostable chitinase PURIFICATION cDNA cloning
下载PDF
Expression and Characterization of a Thermostable Xylanase Gene xynA from a Themophilic Fungus in Pichia pastoris 被引量:3
2
作者 ZHAO Nan GUO Run-fang YU Hong-wei, KE Xiao-jing, JIA Ying-min KE Xiao-jing JIA Ying-min BAIYu 《Agricultural Sciences in China》 CAS CSCD 2011年第3期343-350,共8页
The gene of xylanase (xynA) was amplified by RT-PCR from the total RNA of a themophilic fungus Thermomyces lanuginosus SY2. The sequence analysis showed that gene coding region of mature peptide contained 0.585 kb, ... The gene of xylanase (xynA) was amplified by RT-PCR from the total RNA of a themophilic fungus Thermomyces lanuginosus SY2. The sequence analysis showed that gene coding region of mature peptide contained 0.585 kb, which coded 194 amino acids. The putative amino acid sequence and DNA sequence of xylanase from T. lanuginosus SY2 (GenBank no.: GU166389) were 98.97 and 99.49% identical to the other T. lanuginosus (GenBank no.: U35436). A recombinant plasmid pPIC9K-xynA was constructed by inserting gene xynA into Pichia pastoris secretory vector pPIC9K. Linearized pPIC9K-xynA was transformed into P. pastoris GS115 with the method of electroporation. The recombinant strain was identified by G418 selection and confirmed by PCR analysis. It was induced by 1.0% methanol at 28°C to express the recombinant xylanase. The results showed that the recombinant xylanase was secreted into extracellular fermentation liquid. The highest enzyme activity of 113.5 IU mL-1 and protein content of 889.7 μg mL-1 were detected for 216 h of induction. The optimal pH value and temperature of the enzyme activity was 5.5 and 65°C, respectively. The xylanase activity retained above 80% from pH value 2.5 to 8.5 for 48 h. The enzyme activity was above 85% at incubation temperature of 55°C. 展开更多
关键词 thermomyces lanuginosus XYLANASE Pichia pastoris EXPRESSION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部