The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were stud...The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were studied by means of IR thermal analysis. The enthalpy and the entropy of the hydrogen bond dissociation were determined by the Van't Hoff plot.展开更多
A simple non-isocyanate route is developed for synthesizing crystallizable aliphatic thermoplastic poly(ester urethane) elastomers (TPEURs) with good thermal and mechanical properties. Three prepolymers of 1,6-bis...A simple non-isocyanate route is developed for synthesizing crystallizable aliphatic thermoplastic poly(ester urethane) elastomers (TPEURs) with good thermal and mechanical properties. Three prepolymers of 1,6-bis(hydroxyethyloxycarbonylamino) hexane (BHCH), i.e. PrePBHCHs, were prepared through the self-transurethane polycondensation of BHCH. A poly(butylene adipate) prepolymer (PrePBA) with terminal HO-- groups was prepared and used as a polyester glycol. A series of TPEURs were prepared by the co-polycondensation of the PrePBHCHs with PrePBA at 170 ℃under a reduced pressure of 399 Pa. The TPEURs were characterized by gel permeation chromatography, FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, atomic force microscopy, and tensile test. The TPEURs exhibited Mn up to 23300 g/mol, Mw up to 51100 g/mol, Tg ranging from -33.8 ℃ to -3.1 ℃, Tm from 94.3 ℃ to 111.9 ℃, initial decomposition temperature over 274.7℃, tensile strength up to18.8 MPa with a strain at break of 450.0%, and resilience up to 77.5%. TPU elastomers with good crystallization and mechanical properties were obtained through a non-isocyanate route.展开更多
Black phosphorus(BP), as one of the most promising fillers for flame retarding polymer, has been seriously limited in practical application, due to the agglomeration and poor structural stability challenges.Here, the ...Black phosphorus(BP), as one of the most promising fillers for flame retarding polymer, has been seriously limited in practical application, due to the agglomeration and poor structural stability challenges.Here, the BP was modified by MXene and polydopamine(PDA) via ultrasonication and dopamine modification strategy to improve the structural stability and dispersibility in the matrix. Then, the obtained(BP-MXene@PDA) nanohybrid was employed to promote the mechanical performance, thermal stability,and flame retardancy of thermoplastic polyurethane elastomer(TPU). The resultant TPU composite containing 2 wt.% of BP1-MXene2@PDA showed a 19.2% improvement in the tensile strength and a 13.8%increase in the elongation at break compared to those of the pure TPU. The thermogravimetric analysis suggested that BP-MXene@PDA clearly enhances the thermal stability of TPU composites. Furthermore,the introduction of the BP-MXene@PDA nanohybrids could considerably improve the flame retardancy of TPU composite, i.e., 64.2% and 27.3% decrease in peak heat release rate and total heat release, respectively. The flame-retardant mechanisms of TPU/BP-MXene@PDA in the gas phase and condensed phase were investigated systematically. This work provides a novel strategy to simultaneously enhance the fire safety and mechanical properties of TPU, thus expanding its industrial applications.展开更多
基金Supported by the Key Subject Construction Project of Shanghai Educational Com mittee(No. 13980 70 2 )
文摘The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were studied by means of IR thermal analysis. The enthalpy and the entropy of the hydrogen bond dissociation were determined by the Van't Hoff plot.
基金financially supported by the National Natural Science Foundation of China(Nos.21244006 and 50873013)
文摘A simple non-isocyanate route is developed for synthesizing crystallizable aliphatic thermoplastic poly(ester urethane) elastomers (TPEURs) with good thermal and mechanical properties. Three prepolymers of 1,6-bis(hydroxyethyloxycarbonylamino) hexane (BHCH), i.e. PrePBHCHs, were prepared through the self-transurethane polycondensation of BHCH. A poly(butylene adipate) prepolymer (PrePBA) with terminal HO-- groups was prepared and used as a polyester glycol. A series of TPEURs were prepared by the co-polycondensation of the PrePBHCHs with PrePBA at 170 ℃under a reduced pressure of 399 Pa. The TPEURs were characterized by gel permeation chromatography, FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, atomic force microscopy, and tensile test. The TPEURs exhibited Mn up to 23300 g/mol, Mw up to 51100 g/mol, Tg ranging from -33.8 ℃ to -3.1 ℃, Tm from 94.3 ℃ to 111.9 ℃, initial decomposition temperature over 274.7℃, tensile strength up to18.8 MPa with a strain at break of 450.0%, and resilience up to 77.5%. TPU elastomers with good crystallization and mechanical properties were obtained through a non-isocyanate route.
基金supported by the National Natural Science Foundation of China(No.21908031)Scientific Research Funds of Yunnan Education Department(No.2021Y111)。
文摘Black phosphorus(BP), as one of the most promising fillers for flame retarding polymer, has been seriously limited in practical application, due to the agglomeration and poor structural stability challenges.Here, the BP was modified by MXene and polydopamine(PDA) via ultrasonication and dopamine modification strategy to improve the structural stability and dispersibility in the matrix. Then, the obtained(BP-MXene@PDA) nanohybrid was employed to promote the mechanical performance, thermal stability,and flame retardancy of thermoplastic polyurethane elastomer(TPU). The resultant TPU composite containing 2 wt.% of BP1-MXene2@PDA showed a 19.2% improvement in the tensile strength and a 13.8%increase in the elongation at break compared to those of the pure TPU. The thermogravimetric analysis suggested that BP-MXene@PDA clearly enhances the thermal stability of TPU composites. Furthermore,the introduction of the BP-MXene@PDA nanohybrids could considerably improve the flame retardancy of TPU composite, i.e., 64.2% and 27.3% decrease in peak heat release rate and total heat release, respectively. The flame-retardant mechanisms of TPU/BP-MXene@PDA in the gas phase and condensed phase were investigated systematically. This work provides a novel strategy to simultaneously enhance the fire safety and mechanical properties of TPU, thus expanding its industrial applications.