期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The Friction Wear Properties and Application of Thermoplastic Polyester Elastomer and Polyoxymethylene 被引量:1
1
作者 胡萍 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第3期33-35,共3页
The experiment of injection molding, Dais-simulating test, morphological structure investigation(Scanning Electron Microscopy, SEM),X-ray photoelectron spectroscopy(XPS)were performed on mini-automobile spherical seat... The experiment of injection molding, Dais-simulating test, morphological structure investigation(Scanning Electron Microscopy, SEM),X-ray photoelectron spectroscopy(XPS)were performed on mini-automobile spherical seat which was made of thermoplastic polyester elastomer(TPEE)and oiled polyoxymethylene(POM),respectively. The friction-wear properties between the frictionl pair of polymer spherical seat and metallic(iron)spherical pin were studied. The test results indicate that the antifriction property of TPEE is superior to that of POM, while its surface chemical effect is inferior to that of POM. 展开更多
关键词 thermoplastic polyester elastomer(TPEE) polyoxymethylene(POM) friction wear property surface morphology
下载PDF
High-fire-safety thermoplastic polyester constructed by novel sulfonate with benzimidazole structure 被引量:3
2
作者 Wan-Shou Wu Ping-Hui Duan +3 位作者 Yin-Long Wang Li Chen Xiu-Li Wang Yu-Zhong Wang 《Science China Materials》 SCIE EI CAS CSCD 2021年第8期2067-2080,共14页
The flammability of thermoplastic polyesters and the subsequent heavy smoke and severe melt drips formed after ignition are the main obstacles hindering their widespread application. In this study, a novel ionic monom... The flammability of thermoplastic polyesters and the subsequent heavy smoke and severe melt drips formed after ignition are the main obstacles hindering their widespread application. In this study, a novel ionic monomer containing sulfonate and benzimidazole was synthesized and incorporated into the main chain of poly(ethylene terephthalate)(PET, used as a model thermoplastic polyester) by melt copolymerization. The synergetic effect of ionic aggregation and carbonization endowed the obtained copolyester with high melt viscosity and excellent char-forming ability at high temperatures. The copolyester having a monomer content of 8 mol.% easily achieved the Underwriters Laboratories Inc 94(UL-94) V-0 flammability rating without dripping and the limiting oxygen index value reached 33.0 vol.%.In addition, the total smoke production, peak heat release rate,and maximum CO production decreased by 45.2%, 60.5%, and75.0%, respectively, compared with those of PET. In addition,the copolyester was spinnable, and showed greater adsorption efficiency(99.6%) for a cationic dye from solution compared to PET(6.5%), demonstrating the excellent affinity of the copolyester for the cationic dye. The obtained inherently firesafe PET copolyester has great potential for applications in flame retardant textiles, artwork base materials, and decorative materials for transportation applications. 展开更多
关键词 fire safety thermoplastic polyester cross-linking network CARBONIZATION
原文传递
Increased Elongation at Breaking Point with Improved Mechanical Characteristics in PLA
3
作者 Vishal Atnurkar Jens Schuster Yousuf Pasha Shaik 《Open Journal of Composite Materials》 CAS 2023年第2期13-28,共16页
The main goal of this research was to increase the strength of Polylactic acid (PLA), an entirely biodegradable thermoplastic polyester, and an increase in elongation at the breaking point compared to neat PLA. To thi... The main goal of this research was to increase the strength of Polylactic acid (PLA), an entirely biodegradable thermoplastic polyester, and an increase in elongation at the breaking point compared to neat PLA. To this end, S1, S2, and S3 were melt blended with various percentages of Zeolite, Glycerol, White vinegar, green camphor, Eucalyptus, and Carom seed oils. Here, the addition of glycerol, eucalyptus, and carom seed oils demonstrated an average improvement in impact and tensile strength of 13.44% and 14.55% respectively. Zeolite and glycerol work together as binding agents to improve stress transfer in the matrix, which increases tensile and flexural modulus as well as toughness elongation (>10%). The addition of the aforementioned materials led to an increase in the glass transition temperature and melting temperature, according to further DSC investigation. The thermal stability increased gradually, according to TGA data. 展开更多
关键词 Polylactic Acid Biodegradable thermoplastic polyester ELONGATION ZEOLITE GLYCEROL Toughness Elongation Thermal Stability
下载PDF
Effects of different modifiers on the properties of wood-polymer composites 被引量:7
4
作者 许民 才智 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第1期77-79,J004,共4页
Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The ... Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The results showed modifiers could raise the bonding strength of wood fiber with polymer and improve the mechanical properties of the composites. Different modifiers had different effects on the properties of wood-polymer composites, and comparatively the modifier of isocyanate produced a better result. Wood-polymer composite takes not only the advantages of both wood fiber and polymer, but waterproof, dimensional stability and dynamic strength are also significantly improved. Key word Wood fiber - Thermoplastic polyester - Wood-polymer composites - Modifier - Mechanical properties CLC number TB332 Document code A Foundation item: This study was supported by the Harbin Technology Tackle Key Plan (Development Research of Wood-Polymer Composites with High Wood Matrix) and by Heilongjing Nature Science Fund (Composite Mechanism Study of the Wood Polymer).Biography: XU Min (1963-), Female, Associate professor in Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Chai Ruihai 展开更多
关键词 Wood fiber thermoplastic polyester Wood-polymer composites MODIFIER Mechanical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部