The experiment of injection molding, Dais-simulating test, morphological structure investigation(Scanning Electron Microscopy, SEM),X-ray photoelectron spectroscopy(XPS)were performed on mini-automobile spherical seat...The experiment of injection molding, Dais-simulating test, morphological structure investigation(Scanning Electron Microscopy, SEM),X-ray photoelectron spectroscopy(XPS)were performed on mini-automobile spherical seat which was made of thermoplastic polyester elastomer(TPEE)and oiled polyoxymethylene(POM),respectively. The friction-wear properties between the frictionl pair of polymer spherical seat and metallic(iron)spherical pin were studied. The test results indicate that the antifriction property of TPEE is superior to that of POM, while its surface chemical effect is inferior to that of POM.展开更多
The flammability of thermoplastic polyesters and the subsequent heavy smoke and severe melt drips formed after ignition are the main obstacles hindering their widespread application. In this study, a novel ionic monom...The flammability of thermoplastic polyesters and the subsequent heavy smoke and severe melt drips formed after ignition are the main obstacles hindering their widespread application. In this study, a novel ionic monomer containing sulfonate and benzimidazole was synthesized and incorporated into the main chain of poly(ethylene terephthalate)(PET, used as a model thermoplastic polyester) by melt copolymerization. The synergetic effect of ionic aggregation and carbonization endowed the obtained copolyester with high melt viscosity and excellent char-forming ability at high temperatures. The copolyester having a monomer content of 8 mol.% easily achieved the Underwriters Laboratories Inc 94(UL-94) V-0 flammability rating without dripping and the limiting oxygen index value reached 33.0 vol.%.In addition, the total smoke production, peak heat release rate,and maximum CO production decreased by 45.2%, 60.5%, and75.0%, respectively, compared with those of PET. In addition,the copolyester was spinnable, and showed greater adsorption efficiency(99.6%) for a cationic dye from solution compared to PET(6.5%), demonstrating the excellent affinity of the copolyester for the cationic dye. The obtained inherently firesafe PET copolyester has great potential for applications in flame retardant textiles, artwork base materials, and decorative materials for transportation applications.展开更多
The main goal of this research was to increase the strength of Polylactic acid (PLA), an entirely biodegradable thermoplastic polyester, and an increase in elongation at the breaking point compared to neat PLA. To thi...The main goal of this research was to increase the strength of Polylactic acid (PLA), an entirely biodegradable thermoplastic polyester, and an increase in elongation at the breaking point compared to neat PLA. To this end, S1, S2, and S3 were melt blended with various percentages of Zeolite, Glycerol, White vinegar, green camphor, Eucalyptus, and Carom seed oils. Here, the addition of glycerol, eucalyptus, and carom seed oils demonstrated an average improvement in impact and tensile strength of 13.44% and 14.55% respectively. Zeolite and glycerol work together as binding agents to improve stress transfer in the matrix, which increases tensile and flexural modulus as well as toughness elongation (>10%). The addition of the aforementioned materials led to an increase in the glass transition temperature and melting temperature, according to further DSC investigation. The thermal stability increased gradually, according to TGA data.展开更多
Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The ...Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The results showed modifiers could raise the bonding strength of wood fiber with polymer and improve the mechanical properties of the composites. Different modifiers had different effects on the properties of wood-polymer composites, and comparatively the modifier of isocyanate produced a better result. Wood-polymer composite takes not only the advantages of both wood fiber and polymer, but waterproof, dimensional stability and dynamic strength are also significantly improved. Key word Wood fiber - Thermoplastic polyester - Wood-polymer composites - Modifier - Mechanical properties CLC number TB332 Document code A Foundation item: This study was supported by the Harbin Technology Tackle Key Plan (Development Research of Wood-Polymer Composites with High Wood Matrix) and by Heilongjing Nature Science Fund (Composite Mechanism Study of the Wood Polymer).Biography: XU Min (1963-), Female, Associate professor in Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Chai Ruihai展开更多
基金FundedbyKeyScientificandTechnologicalProjectofHubeiProvince (No .96 1 0 2 1 70 94 )
文摘The experiment of injection molding, Dais-simulating test, morphological structure investigation(Scanning Electron Microscopy, SEM),X-ray photoelectron spectroscopy(XPS)were performed on mini-automobile spherical seat which was made of thermoplastic polyester elastomer(TPEE)and oiled polyoxymethylene(POM),respectively. The friction-wear properties between the frictionl pair of polymer spherical seat and metallic(iron)spherical pin were studied. The test results indicate that the antifriction property of TPEE is superior to that of POM, while its surface chemical effect is inferior to that of POM.
基金financially supported by the National Natural Science Foundation of China (21634006 and 51827803)the National Key Research and Development Program of China (2017YFB0309001)。
文摘The flammability of thermoplastic polyesters and the subsequent heavy smoke and severe melt drips formed after ignition are the main obstacles hindering their widespread application. In this study, a novel ionic monomer containing sulfonate and benzimidazole was synthesized and incorporated into the main chain of poly(ethylene terephthalate)(PET, used as a model thermoplastic polyester) by melt copolymerization. The synergetic effect of ionic aggregation and carbonization endowed the obtained copolyester with high melt viscosity and excellent char-forming ability at high temperatures. The copolyester having a monomer content of 8 mol.% easily achieved the Underwriters Laboratories Inc 94(UL-94) V-0 flammability rating without dripping and the limiting oxygen index value reached 33.0 vol.%.In addition, the total smoke production, peak heat release rate,and maximum CO production decreased by 45.2%, 60.5%, and75.0%, respectively, compared with those of PET. In addition,the copolyester was spinnable, and showed greater adsorption efficiency(99.6%) for a cationic dye from solution compared to PET(6.5%), demonstrating the excellent affinity of the copolyester for the cationic dye. The obtained inherently firesafe PET copolyester has great potential for applications in flame retardant textiles, artwork base materials, and decorative materials for transportation applications.
文摘The main goal of this research was to increase the strength of Polylactic acid (PLA), an entirely biodegradable thermoplastic polyester, and an increase in elongation at the breaking point compared to neat PLA. To this end, S1, S2, and S3 were melt blended with various percentages of Zeolite, Glycerol, White vinegar, green camphor, Eucalyptus, and Carom seed oils. Here, the addition of glycerol, eucalyptus, and carom seed oils demonstrated an average improvement in impact and tensile strength of 13.44% and 14.55% respectively. Zeolite and glycerol work together as binding agents to improve stress transfer in the matrix, which increases tensile and flexural modulus as well as toughness elongation (>10%). The addition of the aforementioned materials led to an increase in the glass transition temperature and melting temperature, according to further DSC investigation. The thermal stability increased gradually, according to TGA data.
基金Supported by the Harbin Technology Tackle Key Plan (Development Research of Wood-Polymer Composites with High Wood Matrix) and by Heilongjing Nature Science Fund (Composite Mechanism Study of the Wood Polymer).
文摘Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The results showed modifiers could raise the bonding strength of wood fiber with polymer and improve the mechanical properties of the composites. Different modifiers had different effects on the properties of wood-polymer composites, and comparatively the modifier of isocyanate produced a better result. Wood-polymer composite takes not only the advantages of both wood fiber and polymer, but waterproof, dimensional stability and dynamic strength are also significantly improved. Key word Wood fiber - Thermoplastic polyester - Wood-polymer composites - Modifier - Mechanical properties CLC number TB332 Document code A Foundation item: This study was supported by the Harbin Technology Tackle Key Plan (Development Research of Wood-Polymer Composites with High Wood Matrix) and by Heilongjing Nature Science Fund (Composite Mechanism Study of the Wood Polymer).Biography: XU Min (1963-), Female, Associate professor in Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Chai Ruihai