期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
SZ-5 Cabin’s Height Changes during Three Super-storms in 2003
1
作者 HUANG Cong LIU Dandan +1 位作者 GUO Jing ZHANG Xiaoxin 《空间科学学报》 CAS CSCD 北大核心 2019年第6期809-815,共7页
In this work,the daily height variations of SZ-5(Shenzhou-5) cabin from 22 October to 28 November in 2003 are analyzed,which includes the period of the Halloween Storm and the Great November Storm.The significant orbi... In this work,the daily height variations of SZ-5(Shenzhou-5) cabin from 22 October to 28 November in 2003 are analyzed,which includes the period of the Halloween Storm and the Great November Storm.The significant orbital decays have been observed at the end of October and in late November due to the great solar flares and the severe geomagnetic storms.According to the equation of the air-drag-force on a spacecraft and the SZ-5 orbital decay information,the relative daily average thermospheric density changes during the three 2003 super-storms are derived and the results are compared with the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended Model(NRLMSISE-00).The results show that the daily average thermospheric density(at the altitude of SZ-5,about 350 km) in storm time enhances to approximately 200% as much as that in the quiet time but the empirical model may somewhat underestimate the average thermospheric density changes and the daily contributions of geomagnetic storms to the density enhancements during these severe space weather events. 展开更多
关键词 Thermosphere density Orbital decay Geomagnetic storm Empirical model
下载PDF
Calibration of GRACE on-board accelerometers for thermosphere density derivation
2
作者 Min Li Zhuo Lei +3 位作者 Wenwen Li Kecai Jiang Youcun Wang Qile Zhao 《Geo-Spatial Information Science》 SCIE EI CSCD 2022年第1期74-87,共14页
Low Earth Orbit satellite on-board accelerometers play an important role in improving our understanding of thermosphere density;however,the accelerometer-derived densities are subject to accelerometer calibration erro... Low Earth Orbit satellite on-board accelerometers play an important role in improving our understanding of thermosphere density;however,the accelerometer-derived densities are subject to accelerometer calibration errors.In this study,two different dynamic calibration schemes,the accelerometer parameter-incorporated orbit fitting and precise orbit determination(POD),are investigated with the Gravity Recovery And Climate Experiment(GRACE)satellite accelerometers for thermosphere density derivation during years 2004–2007(inclusive).We show that the GRACE accelerometer parametrization can be optimized by fixing scale coefficients and estimating biases every 60 min so that the orbit fitting and POD precision can be improved from 10 cm to 2 cm in the absence of empirical acceleration compensations and as a result the integrity of calibration parameters may be reserved.The orbit-fitting scheme demonstrates similar calibration precision with respect to POD.Their bias estimates in the along-track and cross-track components exhibit an offset within 0.1%and a standard deviation(STD)less than 0.3%.Correspondingly,a bias of 2.20%and a STD of 5.75%exists between their thermosphere density estimates.The orbit-fitting and POD-derived thermosphere densities are validated through the comparison against the results published by other institution.The comparison shows that either of them can achieve a precision level at 6%.To derive thermosphere density from the rapid-increasing amount of on-board accelerometer data sets,it is suggested to take full advantage of the orbit-fitting scheme due to its high efficiency as well as high precision. 展开更多
关键词 GRACE accelerometer calibration thermosphere density precise orbit determination orbit fit
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部