The tight sandstones in the Permian Lower Shihezi Formation of Shilijiahan area in the Ordos Basin was taken as study object in this research to quantitatively determine the effects of burial depth, burial time and co...The tight sandstones in the Permian Lower Shihezi Formation of Shilijiahan area in the Ordos Basin was taken as study object in this research to quantitatively determine the effects of burial depth, burial time and compaction strength on porosity during densification of reservoir. Firstly, sandstone compaction profiles were analyzed in detail. Secondly, the theoretical study was performed based on visco-elasto-plastic stress–strain model. Thirdly, multiple regression and iterative algorithm were used respectively to ascertain the variation trends of Young's modulus and equivalent viscosity coefficient with burial depth and burial time. Accordingly, the ternary analytic porosity-reduction model of sandstone compaction trend was established. Eventually, the reasonability of improved model was tested by comparing with thin-section statistics under microscope and the models in common use. The study shows that the new model can divide the porosity reduction into three parts, namely, elastic porosity loss, visco-plastic porosity loss and porosity loss from cementation. And the results calculated by the new model of litharenite in He 2 Member are close to the average value from the thin-section statistics on Houseknecht chart, which approximately reveals the relative magnitudes of compaction and cementation in the normal evolution trend of sandstone porosity. Furthermore, the model can more exactly depict the compaction trend of sandstone affected little by dissolution than previous compaction models, and evaluate sandstone compaction degree and its contribution to reservoir densification during different burial and uplift processes.展开更多
基金Supported by the National Natural Science Foundation of China(4167212441502147)PetroChina Science and Technology Major Project(2016ZX05047001-002)
文摘The tight sandstones in the Permian Lower Shihezi Formation of Shilijiahan area in the Ordos Basin was taken as study object in this research to quantitatively determine the effects of burial depth, burial time and compaction strength on porosity during densification of reservoir. Firstly, sandstone compaction profiles were analyzed in detail. Secondly, the theoretical study was performed based on visco-elasto-plastic stress–strain model. Thirdly, multiple regression and iterative algorithm were used respectively to ascertain the variation trends of Young's modulus and equivalent viscosity coefficient with burial depth and burial time. Accordingly, the ternary analytic porosity-reduction model of sandstone compaction trend was established. Eventually, the reasonability of improved model was tested by comparing with thin-section statistics under microscope and the models in common use. The study shows that the new model can divide the porosity reduction into three parts, namely, elastic porosity loss, visco-plastic porosity loss and porosity loss from cementation. And the results calculated by the new model of litharenite in He 2 Member are close to the average value from the thin-section statistics on Houseknecht chart, which approximately reveals the relative magnitudes of compaction and cementation in the normal evolution trend of sandstone porosity. Furthermore, the model can more exactly depict the compaction trend of sandstone affected little by dissolution than previous compaction models, and evaluate sandstone compaction degree and its contribution to reservoir densification during different burial and uplift processes.