In this note, we seek for functions f which are approximated by the sequence of interpolation polynomials of f obtained by any prescribed system of nodes.
The aim of this paper is to prove a new version of the Riesz-Thorin interpolation theorem on L^(P)(C,H).In the sense of Cullen-regular,we show Hadamard’s three-lines theorem by means of the Maximum modulus principle ...The aim of this paper is to prove a new version of the Riesz-Thorin interpolation theorem on L^(P)(C,H).In the sense of Cullen-regular,we show Hadamard’s three-lines theorem by means of the Maximum modulus principle on a symmetric slice domain.In addition,two applications of the Riesz-Thorin theorem are presented.Finally,we investigate two kinds of Calderón’s complex interpolation methods in LP(C,H).展开更多
In this work, the well-known problem put forward by S N Bernstein in 1930 is studied in a deep step. An operator is constructed by revising double interpolation nodes. It is proved that the operator converges to arbit...In this work, the well-known problem put forward by S N Bernstein in 1930 is studied in a deep step. An operator is constructed by revising double interpolation nodes. It is proved that the operator converges to arbitrary continuous functions uniformly and the convergence order is the best.展开更多
In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation ...In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation of this strategy increases the order of Ostrowski’s method from four to eight and its efficiency index from 1.587 to 1.682. The methods are compared with closest competitors in a series of numerical examples. Moreover, theoretical order of convergence is verified on the examples.展开更多
The wavelet multiresolution interpolation for continuous functions defined on a finite interval is developed in this study by using a simple alternative of transformation matrix.The wavelet multiresolution interpolati...The wavelet multiresolution interpolation for continuous functions defined on a finite interval is developed in this study by using a simple alternative of transformation matrix.The wavelet multiresolution interpolation Galerkin method that applies this interpolation to represent the unknown function and nonlinear terms independently is proposed to solve the boundary value problems with the mixed Dirichlet-Robin boundary conditions and various nonlinearities,including transcendental ones,in which the discretization process is as simple as that in solving linear problems,and only common two-term connection coefficients are needed.All matrices are independent of unknown node values and lead to high efficiency in the calculation of the residual and Jacobian matrices needed in Newton’s method,which does not require numerical integration in the resulting nonlinear discrete system.The validity of the proposed method is examined through several nonlinear problems with interior or boundary layers.The results demonstrate that the proposed wavelet method shows excellent accuracy and stability against nonuniform grids,and high resolution of localized steep gradients can be achieved by using local refined multiresolution grids.In addition,Newton’s method converges rapidly in solving the nonlinear discrete system created by the proposed wavelet method,including the initial guess far from real solutions.展开更多
The main aim of this paper is to study the local anisotropic interpolation error estimates. We show that the interpolation of a nonconforming element satisfy the anisotropic property for both the second and fourth ord...The main aim of this paper is to study the local anisotropic interpolation error estimates. We show that the interpolation of a nonconforming element satisfy the anisotropic property for both the second and fourth order problems.展开更多
In this paper we employ artificial neural networks for predictive approximation of generalized functions having crucial applications in different areas of science including mechanical and chemical engineering, signal ...In this paper we employ artificial neural networks for predictive approximation of generalized functions having crucial applications in different areas of science including mechanical and chemical engineering, signal processing, information transfer, telecommunications, finance, etc. Results of numerical analysis are discussed. It is shown that the known Gibb’s phenomenon does not occur.展开更多
In this article we shall obtain an interpolation formula passing given a serial points and satisfying initial values of the derivatives of higher order in preceding points Finally we shall give the erroneous estimate ...In this article we shall obtain an interpolation formula passing given a serial points and satisfying initial values of the derivatives of higher order in preceding points Finally we shall give the erroneous estimate of the preceding interpolation formula.展开更多
This study evaluates the effectiveness of a new technique that transforms doma in integrals into boundary integrals that is applicable to the boundary element method.Si mulations were conducted in which two-dimensiona...This study evaluates the effectiveness of a new technique that transforms doma in integrals into boundary integrals that is applicable to the boundary element method.Si mulations were conducted in which two-dimensional surfaces were approximated by inter polation using radial basis functions with full and compact supports.Examples involving Poisson’s equation are presented using the boundary element method and the proposed te chnique with compact radial basis functions.The advantages and the disadvantages are e xamined through simulations.The effects of internal poles,the boundary mesh refinemen t and the value for the support of the radial basis functions on performance are assessed.展开更多
文摘The paper is given the interpolation of operators between weighted Hardy spaces and weighted L p spaces when w∈A 1 by Calderon Zygmund decomposition.
文摘In this note, we seek for functions f which are approximated by the sequence of interpolation polynomials of f obtained by any prescribed system of nodes.
基金supported by the Innovation Research for the Postgrad-uates of Guangzhou University(2020GDJC-D06)supported by the National Natural Science Foundation of China(12071229)。
文摘The aim of this paper is to prove a new version of the Riesz-Thorin interpolation theorem on L^(P)(C,H).In the sense of Cullen-regular,we show Hadamard’s three-lines theorem by means of the Maximum modulus principle on a symmetric slice domain.In addition,two applications of the Riesz-Thorin theorem are presented.Finally,we investigate two kinds of Calderón’s complex interpolation methods in LP(C,H).
基金Foundation item: Supported by the National Natural Science Foundation of China(10626045)
文摘In this work, the well-known problem put forward by S N Bernstein in 1930 is studied in a deep step. An operator is constructed by revising double interpolation nodes. It is proved that the operator converges to arbitrary continuous functions uniformly and the convergence order is the best.
文摘In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation of this strategy increases the order of Ostrowski’s method from four to eight and its efficiency index from 1.587 to 1.682. The methods are compared with closest competitors in a series of numerical examples. Moreover, theoretical order of convergence is verified on the examples.
基金supported by the National Natural Science Foundation of China(Nos.12172154 and 11925204)the 111 Project of China(No.B14044)the National Key Project of China(No.GJXM92579)。
文摘The wavelet multiresolution interpolation for continuous functions defined on a finite interval is developed in this study by using a simple alternative of transformation matrix.The wavelet multiresolution interpolation Galerkin method that applies this interpolation to represent the unknown function and nonlinear terms independently is proposed to solve the boundary value problems with the mixed Dirichlet-Robin boundary conditions and various nonlinearities,including transcendental ones,in which the discretization process is as simple as that in solving linear problems,and only common two-term connection coefficients are needed.All matrices are independent of unknown node values and lead to high efficiency in the calculation of the residual and Jacobian matrices needed in Newton’s method,which does not require numerical integration in the resulting nonlinear discrete system.The validity of the proposed method is examined through several nonlinear problems with interior or boundary layers.The results demonstrate that the proposed wavelet method shows excellent accuracy and stability against nonuniform grids,and high resolution of localized steep gradients can be achieved by using local refined multiresolution grids.In addition,Newton’s method converges rapidly in solving the nonlinear discrete system created by the proposed wavelet method,including the initial guess far from real solutions.
文摘The main aim of this paper is to study the local anisotropic interpolation error estimates. We show that the interpolation of a nonconforming element satisfy the anisotropic property for both the second and fourth order problems.
文摘In this paper we employ artificial neural networks for predictive approximation of generalized functions having crucial applications in different areas of science including mechanical and chemical engineering, signal processing, information transfer, telecommunications, finance, etc. Results of numerical analysis are discussed. It is shown that the known Gibb’s phenomenon does not occur.
文摘In this article we shall obtain an interpolation formula passing given a serial points and satisfying initial values of the derivatives of higher order in preceding points Finally we shall give the erroneous estimate of the preceding interpolation formula.
文摘This study evaluates the effectiveness of a new technique that transforms doma in integrals into boundary integrals that is applicable to the boundary element method.Si mulations were conducted in which two-dimensional surfaces were approximated by inter polation using radial basis functions with full and compact supports.Examples involving Poisson’s equation are presented using the boundary element method and the proposed te chnique with compact radial basis functions.The advantages and the disadvantages are e xamined through simulations.The effects of internal poles,the boundary mesh refinemen t and the value for the support of the radial basis functions on performance are assessed.