Counter gravity casting equipments(CGCE) were widely used to produce large thin-walled A357 aluminum alloy components. To improve the pressure control precision of CGCE to get high quality castings, a pressure control...Counter gravity casting equipments(CGCE) were widely used to produce large thin-walled A357 aluminum alloy components. To improve the pressure control precision of CGCE to get high quality castings, a pressure control system based on fuzzy-PID hybrid control technology and the digital assembled valve was developed. The actual pressure tracking experiment results show that the special system by applying PID controller and fuzzy controller to varied phases, is not only able to inherit the small error and good static stability of classical PID control, but also has fuzzy control’s advantage of fully adapting itself to the object. The pressure control error is less than 0.3 kPa. By using this pressure control system, large complex thin-walled A357 aluminum alloy castings with high quality was successfully produced.展开更多
Thin-walled structures have been widely used in the aerospace industry.The dynamic interaction between the milling cutter and thin-walled workpiece can easily lead to vibration.This paper investigates the vibration ca...Thin-walled structures have been widely used in the aerospace industry.The dynamic interaction between the milling cutter and thin-walled workpiece can easily lead to vibration.This paper investigates the vibration caused during milling the thin-walled workpiece on the NC machining center,presents a theoretical milling vibration model of thin-walled beam.The model was verified by using milling experiments and numerical simulations.Some valuable conclusions are derived,this will be references to scientific research and guides to the vibration-free milling of thin-walled structures at different cutting speeds.展开更多
Cell wall architecture plays a key role in stalk strength and forage digestibility.Lignin,cellulose,and hemicellulose are the three main components of plant cell walls,and they can impact stalk quality by affecting th...Cell wall architecture plays a key role in stalk strength and forage digestibility.Lignin,cellulose,and hemicellulose are the three main components of plant cell walls,and they can impact stalk quality by affecting the structure and strength of the cell wall.To explore cell wall development during secondary cell wall lignification in maize stalks,conventional and conditional genetic mapping were used to identify the dynamic quantitative trait loci(QTLs)of the cell wall components and digestibility traits during five growth stages after silking.Acid detergent lignin(ADL),cellulose(CEL),acid detergent fiber(ADF),neutral detergent fiber(NDF),and in vitro dry matter digestibility(IVDMD)were evaluated in a maize recombinant inbred line(RIL)population.ADL,CEL,ADF,and NDF gradually increased from 10 to 40 days after silking(DAS),and then they decreased.IVDMD initially decreased until 40 DAS,and then it increased slightly.Seventytwo QTLs were identified for the five traits,and each accounted for 3.48–24.04%of the phenotypic variation.Six QTL hotspots were found,and they were localized in the 1.08,2.04,2.07,7.03,8.05,and 9.03 bins of the maize genome.Within the interval of the pleiotropic QTL identified in bin 1.08 of the maize genome,six genes associated with cell wall component biosynthesis were identified as potential candidate genes for stalk strength as well as cell wall-related traits.In addition,26 conditional QTLs were detected in the five stages for all of the investigated traits.Twenty-two of the 26 conditional QTLs were found at 30 DAS conditioned using the values of 20 DAS,and at 50 DAS conditioned using the values of 40 DAS.These results indicated that cell wall-related traits are regulated by many genes,which are specifically expressed at different stages after silking.Simultaneous improvements in both forage digestibility and lodging resistance could be achieved by pyramiding multiple beneficial QTL alleles identified in this study.展开更多
The deformation performance index limits of high reinforced concrete (RC) shear wall components based on Chinese codes were discussed by the nonlinear finite element method. Two typical RC shear wall specimens in th...The deformation performance index limits of high reinforced concrete (RC) shear wall components based on Chinese codes were discussed by the nonlinear finite element method. Two typical RC shear wall specimens in the previous work were first used to verify the correctness of the nonlinear finite element method. Then, the nonlinear finite element method was applied to study the deformability of a set of high RC shear wall components designed according to current Chinese codes and with shear span ratio λ≥2.0. Parametric studies were made on the influence of shear span ratio, axial compression ratio, ratio of flexural capacity to shear capacity and main flexural reinforcement ratio of confined botmdary members. Finally, the deformation performance index and its limits of high RC shear wall components under severe earthquakes were proposed by the finite element model results, which offers a reference in determining the performance status of RC shear wall components designed based on Chinese codes.展开更多
In the superplastic sheet forming process, the uniformity of the sheet's final thickness distribution is vital for ensuring the good mechanical quality of the formed components. The influences of the component sha...In the superplastic sheet forming process, the uniformity of the sheet's final thickness distribution is vital for ensuring the good mechanical quality of the formed components. The influences of the component shape and the contact friction on the final thickness distribution were investigated in this work by using finite element method on a series of axisymmetric models. It was concluded that shape optimization and friction elimination are required to get uniform thickness distribution, and eventually to improve the mechanical quality of the formed components. The constitutive equation of the Ti-6A1-4V superplastic material was also determined on the basis of experimental data.展开更多
Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout...Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout to minimize the manufacturing deformation.Firstly,a topological optimization model that takes the stiffness of ATWC as the objective function and the volume of the locating structure as the constraint is established.Secondly,ATWC and the locating structure are regarded as an integrated entity,and the variable-density method based topological optimization approach is adopted for the optimization of the locating structure using ABAQUS topology optimization module(ATOM).Thirdly,through a subsequent model reconstruction referring to the obtained topological structure,the optimal fixture locating layout is achieved.Finally,a case study is conducted to verify the proposed method and the comparison results with firefly algorithm(FA)coupled with finite element analysis(FEA)indicate that the number and positions of the locators for ATWC can be optimized simultaneously and successfully by the proposed topological optimization model.展开更多
The aim of this study was to determine the effects of additions of different doses of clove oil (Syzygium aromaticum L.) on cell wall component of wheat straw. For this purpose, wheat straw was treated with 100 ppm ...The aim of this study was to determine the effects of additions of different doses of clove oil (Syzygium aromaticum L.) on cell wall component of wheat straw. For this purpose, wheat straw was treated with 100 ppm and 200 ppm clove oil and applied at two different time period (1 h and 5 h). The microscopic analysis was made on cell wall components of untreated and treated of the straw. According to the research findings, with increasing doses and time of clove oil treatment, particularly, neutral detergent fiber (NDF) and acid detergent fiber (ADF) content of straw significantly (P 〈 0.05) reduced, approximately at the level of 15% for NDF and 13% for ADF, respectively. The lowest NDF, ADF, acid detergent lignin (ADL) and cellulose contents were found in 200 ppm dose and 5 h period. However, the lowest stem section thickness likewise was determined in 5 h period (P 〈 0.05), but there was no significant difference between the dose. Consequently, it could be said that the addition of clove oil have a positive influence on cell wall components and stem section thickness of wheat straw.展开更多
We investigate domain wall excitations in a two-component Bose–Einstein condensate with two-body interactions and pair-transition effects. It is shown that domain wall excitations can be described exactly by kink and...We investigate domain wall excitations in a two-component Bose–Einstein condensate with two-body interactions and pair-transition effects. It is shown that domain wall excitations can be described exactly by kink and anti-kink excitations in each component. The domain wall solutions are given analytically, which exist with different conditions compared with the domain wall reported before. Bubble-droplet structure can be also obtained from the fundamental domain wall, and their interactions are investigated analytically. Especially, domain wall interactions demonstrate some striking particle transition dynamics. These striking transition effects make the domain wall admit quite different collision behavior, in contrast to the collision between solitons or other nonlinear waves. The collisions between kinks induce some phase shift, which makes the domain wall change greatly. Their collisions can be elastic or inelastic with proper combination of fundamental domain walls. These characters can be used to manipulate one domain wall by interacting with other ones.展开更多
By foaming and carbonization processes under atmospheric pressure, a novel thin-walled carbon foam with developed foam structure was successfully prepared from loose medium component(LMC) separated from raw coal by ex...By foaming and carbonization processes under atmospheric pressure, a novel thin-walled carbon foam with developed foam structure was successfully prepared from loose medium component(LMC) separated from raw coal by extraction and back-extraction method. The influences of foaming time, carbonization time, and micromolecule content on foam structure were investigated by scanning electron microscope and mercury injection data. Moreover, foaming mechanism of LMC was analyzed and expounded. The results showed that spherical pores and uniform ultrathin pore walls constitute threedimensional foam structure of carbon foam and foam structure is developed with well connectivity.The effects of foaming time, carbonization time, and micromolecule content on foam structure are significant. Especially, average pore diameters of carbon foams prepared from the extracts of LMC are much smaller. With the rise of extraction rate, average pore diameter decreases and pore size distribution is more concentrated on the aperture section of 0–10 μm.展开更多
In a microfluidic system, flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in a microchannel. The flow-electricity interaction in a complex microfluidic system subjected to...In a microfluidic system, flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in a microchannel. The flow-electricity interaction in a complex microfluidic system subjected to joint action of wall slip and electro-viscous effect is an important topic. This paper presents an analytic solution of pressuredriven liquid flow velocity and flow-induced electric field in a two-dimensional microchannel made of different materials with wall slip and electro-viscous effects. The Poisson- Boltzmann equation and the Navier-Stokes equation are solved for the analytic solutions. The analytic solutions agree well with the numerical solutions. It was found that the wall slip amplifies the fow-induced electric field and enhances the electro-viscous effect on flow. Thus the electro-viscous effect can be significant in a relatively wide microchannel with relatively large kh, the ratio of channel width to thickness of electric double layer, in comparison with the channel without wall slip.展开更多
To investigate the chemical structure of cell wall mannan obtained from pathogenic yeast, Candida tropicalis NBRC 1400 (former antigenic standard strain, IFO 1400). As a result of two-dimensional NMR analysis, it was ...To investigate the chemical structure of cell wall mannan obtained from pathogenic yeast, Candida tropicalis NBRC 1400 (former antigenic standard strain, IFO 1400). As a result of two-dimensional NMR analysis, it was shown that the mannan of this strain is composed of α-1,6-, α-1,3-, α-1,2- and β-1,2-linked mannose residues. In this research, the mannan was subjected to three degradation procedures, acid-treatment, α-mannosidase, and acetolysis under two conditions in order to determine the chemical structure of the antigenic oligomannosyl side chains in this molecule. The 1H-nuclear magnetic resonance spectra of resultant oligosaccharides, pentaose and hexaose, demonstrated the existence of the oligomannosyl side chains corresponding to Manα1-3Manα1-2Manα1-2Manα1-2Man and Manα1-3Manα1-2Manα1-2Manα1-2Manα1-2Man, respectively, which have previously also been found in Candida albicans serotype A strain mannans. These findings indicate that C. tropicalis and C. albicans serotype A have no significant difference in the chemical structure of these cell wall mannans. Therefore, it can be interpreted that it is extremely difficult to distinguish both species by targeting the antigenic group in these mannans.展开更多
High enzymatic activity is required for laccase applications.Central composite design (CCD)-based response surface methodology (RSM) can effectively increase the enzymatic activity of Pleurotus ostreatus P40 in li...High enzymatic activity is required for laccase applications.Central composite design (CCD)-based response surface methodology (RSM) can effectively increase the enzymatic activity of Pleurotus ostreatus P40 in liquid substrate fermentation.Initial screening of the nutritional components was performed using a Plackett-Burman design.The variables,namely,bran,bagasse,Tween 80,and yeast extract,were found to have statistically significant effects on laccase activity.These variables were further optimized using CCD-based RSM.Optimal concentrations for the maximum laccase activity were 8.144 2 g/L bran,50 g/L bagasse,0.424 1 mL/L Tween 80,and 2.832 5 g/L yeast extract.Under optimized conditions,the maximum measured laccase activity reached 96 480 U/L,which was close to the predicted value (104 830 U/L) by RSM.Therefore,RSM can be used to optimize culture components for laccase activity from Pieurotus ostreatus P40.展开更多
The preparation, characterization, and test of the first wall materials designed to be used in the fusion reactor have remained challenging problems in the material science. This work uses the firstprinciples method a...The preparation, characterization, and test of the first wall materials designed to be used in the fusion reactor have remained challenging problems in the material science. This work uses the firstprinciples method as implemented in the CASTEP package to study the influ ences of the doped titanium carbide on the structural sta bility of the WTiC material. The calculated total energy and enthalpy have been used as criteria to judge the structural models built with consideration of symmetry. Our simulation indicates that the doped TiC tends to form its own domain up to the investigated nanoscale, which implies a possible phase separation. This result reveals the intrinsic reason for the composite nature of the WTiC material and provides an explanation for the experimen tally observed phase separation at the nanoscale. Our approach also sheds a light on explaining the enhancing effects of doped components on the durability, reliability, corrosion resistance, etc., in many special steels.展开更多
A second-moment closure for the near-wall turbulence is proposed. The limiting behaviour of this closure near a wall is consistent with that of the exact Reynolds-stress transport equations, and it converts asymptotic...A second-moment closure for the near-wall turbulence is proposed. The limiting behaviour of this closure near a wall is consistent with that of the exact Reynolds-stress transport equations, and it converts asymptotically into a high- Reynolds-number closure remote from the wall. The closure is applied to a pressure- driven 3D transient channel flow. The predicted results are in fair agreement with the DNS data.展开更多
基金Project(2006CB605202) supported by the Basic Research Development Program of China
文摘Counter gravity casting equipments(CGCE) were widely used to produce large thin-walled A357 aluminum alloy components. To improve the pressure control precision of CGCE to get high quality castings, a pressure control system based on fuzzy-PID hybrid control technology and the digital assembled valve was developed. The actual pressure tracking experiment results show that the special system by applying PID controller and fuzzy controller to varied phases, is not only able to inherit the small error and good static stability of classical PID control, but also has fuzzy control’s advantage of fully adapting itself to the object. The pressure control error is less than 0.3 kPa. By using this pressure control system, large complex thin-walled A357 aluminum alloy castings with high quality was successfully produced.
文摘Thin-walled structures have been widely used in the aerospace industry.The dynamic interaction between the milling cutter and thin-walled workpiece can easily lead to vibration.This paper investigates the vibration caused during milling the thin-walled workpiece on the NC machining center,presents a theoretical milling vibration model of thin-walled beam.The model was verified by using milling experiments and numerical simulations.Some valuable conclusions are derived,this will be references to scientific research and guides to the vibration-free milling of thin-walled structures at different cutting speeds.
基金the National Natural Science Foundation of China(31801367)the National Key Research and Development Program of China(2016YFD0101200)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences.
文摘Cell wall architecture plays a key role in stalk strength and forage digestibility.Lignin,cellulose,and hemicellulose are the three main components of plant cell walls,and they can impact stalk quality by affecting the structure and strength of the cell wall.To explore cell wall development during secondary cell wall lignification in maize stalks,conventional and conditional genetic mapping were used to identify the dynamic quantitative trait loci(QTLs)of the cell wall components and digestibility traits during five growth stages after silking.Acid detergent lignin(ADL),cellulose(CEL),acid detergent fiber(ADF),neutral detergent fiber(NDF),and in vitro dry matter digestibility(IVDMD)were evaluated in a maize recombinant inbred line(RIL)population.ADL,CEL,ADF,and NDF gradually increased from 10 to 40 days after silking(DAS),and then they decreased.IVDMD initially decreased until 40 DAS,and then it increased slightly.Seventytwo QTLs were identified for the five traits,and each accounted for 3.48–24.04%of the phenotypic variation.Six QTL hotspots were found,and they were localized in the 1.08,2.04,2.07,7.03,8.05,and 9.03 bins of the maize genome.Within the interval of the pleiotropic QTL identified in bin 1.08 of the maize genome,six genes associated with cell wall component biosynthesis were identified as potential candidate genes for stalk strength as well as cell wall-related traits.In addition,26 conditional QTLs were detected in the five stages for all of the investigated traits.Twenty-two of the 26 conditional QTLs were found at 30 DAS conditioned using the values of 20 DAS,and at 50 DAS conditioned using the values of 40 DAS.These results indicated that cell wall-related traits are regulated by many genes,which are specifically expressed at different stages after silking.Simultaneous improvements in both forage digestibility and lodging resistance could be achieved by pyramiding multiple beneficial QTL alleles identified in this study.
基金Project(2009ZA04) supported by the Independent Research Foundation of State Key Laboratory of Subtropical Architecture Science,China
文摘The deformation performance index limits of high reinforced concrete (RC) shear wall components based on Chinese codes were discussed by the nonlinear finite element method. Two typical RC shear wall specimens in the previous work were first used to verify the correctness of the nonlinear finite element method. Then, the nonlinear finite element method was applied to study the deformability of a set of high RC shear wall components designed according to current Chinese codes and with shear span ratio λ≥2.0. Parametric studies were made on the influence of shear span ratio, axial compression ratio, ratio of flexural capacity to shear capacity and main flexural reinforcement ratio of confined botmdary members. Finally, the deformation performance index and its limits of high RC shear wall components under severe earthquakes were proposed by the finite element model results, which offers a reference in determining the performance status of RC shear wall components designed based on Chinese codes.
基金Project supported by the National Natural Science Foundation of China (No. 50477030), and the Scientific Research Foundation for ROCS, State Education Ministry, China
文摘In the superplastic sheet forming process, the uniformity of the sheet's final thickness distribution is vital for ensuring the good mechanical quality of the formed components. The influences of the component shape and the contact friction on the final thickness distribution were investigated in this work by using finite element method on a series of axisymmetric models. It was concluded that shape optimization and friction elimination are required to get uniform thickness distribution, and eventually to improve the mechanical quality of the formed components. The constitutive equation of the Ti-6A1-4V superplastic material was also determined on the basis of experimental data.
基金supported by the National Natural Science Foundation of China(No.51375396)the Shaanxi Science and Technology Innovation Project Plan,China(No.2016KTCQ01-50)
文摘Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout to minimize the manufacturing deformation.Firstly,a topological optimization model that takes the stiffness of ATWC as the objective function and the volume of the locating structure as the constraint is established.Secondly,ATWC and the locating structure are regarded as an integrated entity,and the variable-density method based topological optimization approach is adopted for the optimization of the locating structure using ABAQUS topology optimization module(ATOM).Thirdly,through a subsequent model reconstruction referring to the obtained topological structure,the optimal fixture locating layout is achieved.Finally,a case study is conducted to verify the proposed method and the comparison results with firefly algorithm(FA)coupled with finite element analysis(FEA)indicate that the number and positions of the locators for ATWC can be optimized simultaneously and successfully by the proposed topological optimization model.
文摘The aim of this study was to determine the effects of additions of different doses of clove oil (Syzygium aromaticum L.) on cell wall component of wheat straw. For this purpose, wheat straw was treated with 100 ppm and 200 ppm clove oil and applied at two different time period (1 h and 5 h). The microscopic analysis was made on cell wall components of untreated and treated of the straw. According to the research findings, with increasing doses and time of clove oil treatment, particularly, neutral detergent fiber (NDF) and acid detergent fiber (ADF) content of straw significantly (P 〈 0.05) reduced, approximately at the level of 15% for NDF and 13% for ADF, respectively. The lowest NDF, ADF, acid detergent lignin (ADL) and cellulose contents were found in 200 ppm dose and 5 h period. However, the lowest stem section thickness likewise was determined in 5 h period (P 〈 0.05), but there was no significant difference between the dose. Consequently, it could be said that the addition of clove oil have a positive influence on cell wall components and stem section thickness of wheat straw.
基金Project supported by the National Natural Science Foundation of China(Grant No.11775176)the Major Basic Research Program of the Natural Science Foundation of Shaanxi Province,China(Grant No.2018KJXX-094)the Key Innovative Research Team of Quantum Many-Body Theory and Quantum Control in Shaanxi Province,China(Grant No.2017KCT-12)
文摘We investigate domain wall excitations in a two-component Bose–Einstein condensate with two-body interactions and pair-transition effects. It is shown that domain wall excitations can be described exactly by kink and anti-kink excitations in each component. The domain wall solutions are given analytically, which exist with different conditions compared with the domain wall reported before. Bubble-droplet structure can be also obtained from the fundamental domain wall, and their interactions are investigated analytically. Especially, domain wall interactions demonstrate some striking particle transition dynamics. These striking transition effects make the domain wall admit quite different collision behavior, in contrast to the collision between solitons or other nonlinear waves. The collisions between kinks induce some phase shift, which makes the domain wall change greatly. Their collisions can be elastic or inelastic with proper combination of fundamental domain walls. These characters can be used to manipulate one domain wall by interacting with other ones.
基金supported by the National Natural Science Foundation of China (Nos. 51274201 and 51674260)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20130095110006)
文摘By foaming and carbonization processes under atmospheric pressure, a novel thin-walled carbon foam with developed foam structure was successfully prepared from loose medium component(LMC) separated from raw coal by extraction and back-extraction method. The influences of foaming time, carbonization time, and micromolecule content on foam structure were investigated by scanning electron microscope and mercury injection data. Moreover, foaming mechanism of LMC was analyzed and expounded. The results showed that spherical pores and uniform ultrathin pore walls constitute threedimensional foam structure of carbon foam and foam structure is developed with well connectivity.The effects of foaming time, carbonization time, and micromolecule content on foam structure are significant. Especially, average pore diameters of carbon foams prepared from the extracts of LMC are much smaller. With the rise of extraction rate, average pore diameter decreases and pore size distribution is more concentrated on the aperture section of 0–10 μm.
基金supported by the National Natural Science Foundation of China(10872076)
文摘In a microfluidic system, flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in a microchannel. The flow-electricity interaction in a complex microfluidic system subjected to joint action of wall slip and electro-viscous effect is an important topic. This paper presents an analytic solution of pressuredriven liquid flow velocity and flow-induced electric field in a two-dimensional microchannel made of different materials with wall slip and electro-viscous effects. The Poisson- Boltzmann equation and the Navier-Stokes equation are solved for the analytic solutions. The analytic solutions agree well with the numerical solutions. It was found that the wall slip amplifies the fow-induced electric field and enhances the electro-viscous effect on flow. Thus the electro-viscous effect can be significant in a relatively wide microchannel with relatively large kh, the ratio of channel width to thickness of electric double layer, in comparison with the channel without wall slip.
文摘To investigate the chemical structure of cell wall mannan obtained from pathogenic yeast, Candida tropicalis NBRC 1400 (former antigenic standard strain, IFO 1400). As a result of two-dimensional NMR analysis, it was shown that the mannan of this strain is composed of α-1,6-, α-1,3-, α-1,2- and β-1,2-linked mannose residues. In this research, the mannan was subjected to three degradation procedures, acid-treatment, α-mannosidase, and acetolysis under two conditions in order to determine the chemical structure of the antigenic oligomannosyl side chains in this molecule. The 1H-nuclear magnetic resonance spectra of resultant oligosaccharides, pentaose and hexaose, demonstrated the existence of the oligomannosyl side chains corresponding to Manα1-3Manα1-2Manα1-2Manα1-2Man and Manα1-3Manα1-2Manα1-2Manα1-2Manα1-2Man, respectively, which have previously also been found in Candida albicans serotype A strain mannans. These findings indicate that C. tropicalis and C. albicans serotype A have no significant difference in the chemical structure of these cell wall mannans. Therefore, it can be interpreted that it is extremely difficult to distinguish both species by targeting the antigenic group in these mannans.
基金National Science&Technology Pillar Program of China(No.2012BAC02B04)National Natural Science Foundation of China(No.41201306)
文摘High enzymatic activity is required for laccase applications.Central composite design (CCD)-based response surface methodology (RSM) can effectively increase the enzymatic activity of Pleurotus ostreatus P40 in liquid substrate fermentation.Initial screening of the nutritional components was performed using a Plackett-Burman design.The variables,namely,bran,bagasse,Tween 80,and yeast extract,were found to have statistically significant effects on laccase activity.These variables were further optimized using CCD-based RSM.Optimal concentrations for the maximum laccase activity were 8.144 2 g/L bran,50 g/L bagasse,0.424 1 mL/L Tween 80,and 2.832 5 g/L yeast extract.Under optimized conditions,the maximum measured laccase activity reached 96 480 U/L,which was close to the predicted value (104 830 U/L) by RSM.Therefore,RSM can be used to optimize culture components for laccase activity from Pieurotus ostreatus P40.
基金finantially supported by the Science Foundation for International Cooperation of Sichuan Province (2014HH0016)the Fundamental Research Funds for the Central Universities (SWJTU2014: A0920502051113-10000)National Magnetic Confinement Fusion Science Program (2011GB112001)
文摘The preparation, characterization, and test of the first wall materials designed to be used in the fusion reactor have remained challenging problems in the material science. This work uses the firstprinciples method as implemented in the CASTEP package to study the influ ences of the doped titanium carbide on the structural sta bility of the WTiC material. The calculated total energy and enthalpy have been used as criteria to judge the structural models built with consideration of symmetry. Our simulation indicates that the doped TiC tends to form its own domain up to the investigated nanoscale, which implies a possible phase separation. This result reveals the intrinsic reason for the composite nature of the WTiC material and provides an explanation for the experimen tally observed phase separation at the nanoscale. Our approach also sheds a light on explaining the enhancing effects of doped components on the durability, reliability, corrosion resistance, etc., in many special steels.
基金The project supported by the National Natural Science Foundation of China
文摘A second-moment closure for the near-wall turbulence is proposed. The limiting behaviour of this closure near a wall is consistent with that of the exact Reynolds-stress transport equations, and it converts asymptotically into a high- Reynolds-number closure remote from the wall. The closure is applied to a pressure- driven 3D transient channel flow. The predicted results are in fair agreement with the DNS data.