In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection bein...In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection being taken as a perturbation parameter. These sets of linear equations are solved by the spline finite-point (SFP) method and by the spline finite element (SFE) method. The solutions for rectangular plates having any length-to-width ratios under a uniformly distributed load and with various boundary conditions are presented, and the analytical formulas for displacements and deflections are given in the paper. The computer programs are worked out by ourselves. Comparison of the results with those in other papers indicates that the results of this paper are satisfactorily better.展开更多
The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The supp...The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The support can be elastic. Loads imposed can be polynomial distributed loads, uniformly distributed radial forces or moments along the edge respectively or their combinations. Convergent solutions can still be obtained by this method under the load whose value is in great excess of normal one. Under the action of the uniformly distributed loads, linear solutions of circular plates with linearly or quadratically variable thickness are compared with those obtained by the parameter method. Buckling of a circular plate with identical thickness beyond critical thrust is compared with those obtained by the power series method.展开更多
Common tools based on landmarks in medical image elastic registration are Thin Plate Spline (TPS) and Compact Support Radial Basis Function (CSRBF). TPS forces the corresponding landmarks to exactly match each other a...Common tools based on landmarks in medical image elastic registration are Thin Plate Spline (TPS) and Compact Support Radial Basis Function (CSRBF). TPS forces the corresponding landmarks to exactly match each other and minimizes the bending energy of the whole image. However, in real application, such scheme would deform the image globally when deformation is only local. CSRBF needs manually determine the support size, although its deformation is limited local. Therefore, to limit the effect of the deformation, new Compact Support Thin Plate Spline algorithm (CSTPS) is approached, analyzed and applied. Such new approach gains optimal mutual information, which shows its registration result satisfactory. The experiments also show it can apply in both local and global elastic registration.展开更多
文摘In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection being taken as a perturbation parameter. These sets of linear equations are solved by the spline finite-point (SFP) method and by the spline finite element (SFE) method. The solutions for rectangular plates having any length-to-width ratios under a uniformly distributed load and with various boundary conditions are presented, and the analytical formulas for displacements and deflections are given in the paper. The computer programs are worked out by ourselves. Comparison of the results with those in other papers indicates that the results of this paper are satisfactorily better.
文摘The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The support can be elastic. Loads imposed can be polynomial distributed loads, uniformly distributed radial forces or moments along the edge respectively or their combinations. Convergent solutions can still be obtained by this method under the load whose value is in great excess of normal one. Under the action of the uniformly distributed loads, linear solutions of circular plates with linearly or quadratically variable thickness are compared with those obtained by the parameter method. Buckling of a circular plate with identical thickness beyond critical thrust is compared with those obtained by the power series method.
基金the National Natural Science Foundation of China (No.60572101) the Natural Science Foundation of Guangdong Province (No.31789).
文摘Common tools based on landmarks in medical image elastic registration are Thin Plate Spline (TPS) and Compact Support Radial Basis Function (CSRBF). TPS forces the corresponding landmarks to exactly match each other and minimizes the bending energy of the whole image. However, in real application, such scheme would deform the image globally when deformation is only local. CSRBF needs manually determine the support size, although its deformation is limited local. Therefore, to limit the effect of the deformation, new Compact Support Thin Plate Spline algorithm (CSTPS) is approached, analyzed and applied. Such new approach gains optimal mutual information, which shows its registration result satisfactory. The experiments also show it can apply in both local and global elastic registration.
基金中国科学院知识创新重要方向项目"黄土高原水土保持的区域环境效应"(KZCX3-SW-421)中澳合作项目ACIAR PROJECT"Regional impacts of re-vegetation on water resources of the Loess Plateau+1 种基金China and Middle and Upper Murrumbidgee CatchmentAustralia"(LWR1/2002/018)