Purpoe: To evaluate retinal nerve fiber layer (RNFL) thickness measurements in local normal Chinese subjects of different age groups and analyse the correlation of RNFL thickness with age using scanning laser polarime...Purpoe: To evaluate retinal nerve fiber layer (RNFL) thickness measurements in local normal Chinese subjects of different age groups and analyse the correlation of RNFL thickness with age using scanning laser polarimetry (SLP,GDxVCC). To assess the reproducibility of RNFL thickness measurement with GDxVCC. Methods: The RNFL thickness of 67 normal subjects (123 eyes) were measured by GDxVCC. The average TSNIT parameters were calculated. The differences of RNFL thickness between sex,right and left eyes,superior and inferior were compared. The relationship between RNFL thickness and age was analyzed with correlation analysis and linear regression analysis. The intraclass correlation coefficients (ICC) of three images in every eye were calculated. Results: The average peripapillary RNFL thickness at the superior,inferior and whole ellipse regions in 123 eyes of 67 normal subjects were (70.30±6.76)(?)m,(67.35±6.77)(?)m and (56.87±4.53)(?) m,respectively. The average TNSIT standard deviation was 23.68±4.61 and the average inter-eye symmetric value was 0.86±0.11. There were significant difference of RNFL thickness between superior and inferior (t=4.952,P < 0.001). There were significant difference of inferior RNFL thickness and TNSIT standard deviation between right and left eyes (P=0.005 and 0.002),while not significant difference of superior RNFL thickness and whole mean RNFL thickness between right and left eye (P=0.086 and 0.529). There was no significant difference in TSNIT parameters between different genders. There was a slight negative correlation average RNFL thickness in superior sector with age (decreased approximately 0.15 microns per year,P=0.047) in the subjects aged below 60 years old. The ICC values of RNFL thickness were >0.8 in superior,inferior and global. Conclusions: The RNFL thickness can be measured accurately by GDxVCC and the reproducibility of RNFL thickness measurement by GDxVCC is good. There was a slight negative correlation between average RNFL thickness in superior with age. More researches on the effects of age on RNFL thickness by GDxVCC are needed.展开更多
The fractal curve is proposed as a novel scanning path used in Layered Manufacturing. Aiming at a limitation that the fractal curve can only fill a square region, a method is developed to realize the trimming of frac...The fractal curve is proposed as a novel scanning path used in Layered Manufacturing. Aiming at a limitation that the fractal curve can only fill a square region, a method is developed to realize the trimming of fractal curve in arbitrary boundary layer by means of judging intersection points between parameterized arbitrary boundary and a FASS (space filling, self avoiding, simple and self similar) fractal curve. Accordingly, the related algorithm concerning with determining intersection points has been investigated according to the recursion feature of the fractal curve, and in the process of the fractal curve traversed, the rule of judging intersection points is ascertained as well, so that the laser scanning beam can “walk” along the fractal curve inside the desired boundary, and arbitrary contour components are fabricated.展开更多
The In segregation and its suppression in InGaAs/AlGaAs quantum well are investigated by using high-resolution x-ray diffraction(XRD)and photoluminescence(PL),combined with the state-of-the-art aberration corrected sc...The In segregation and its suppression in InGaAs/AlGaAs quantum well are investigated by using high-resolution x-ray diffraction(XRD)and photoluminescence(PL),combined with the state-of-the-art aberration corrected scanning transmission electron microscopy(Cs-STEM)techniques.To facility our study,we grow two multiple quantum wells(MQWs)samples,which are almost identical except that in sample B a thin GaAs layer is inserted in each of the InGaAs well and AlGaAs barrier layer comparing to pristine InGaAs/AlGaAs MQWs(sample A).Our study indeed shows the direct evidences that In segregation occurs in the InGaAs/AlGaAs interface,and the effect of the Ga As insertion layer on suppressing the segregation of In atoms is also demonstrated on the atomic-scale.Therefore,the atomic-scale insights are provided to understand the segregation behavior of In atoms and to unravel the underlying mechanism of the effect of GaAs insertion layer on the improvement of crystallinity,interface roughness,and further an enhanced optical performance of InGaAs/AlGaAs QWs.展开更多
我国东南沿海尤其是温州地区广泛存在上覆深厚软土下覆不均匀卵石的地层。该区域的钻孔灌注桩常采用后注浆技术改善其承载性能。为了评价后注浆技术对这类地层中灌注桩承载力改善效果,开展了相应的模型试验,对比了不同注浆量对桩承载力...我国东南沿海尤其是温州地区广泛存在上覆深厚软土下覆不均匀卵石的地层。该区域的钻孔灌注桩常采用后注浆技术改善其承载性能。为了评价后注浆技术对这类地层中灌注桩承载力改善效果,开展了相应的模型试验,对比了不同注浆量对桩承载力的影响程度;并结合扫描电镜(scanning electron microscope,简称SEM)试验分析了浆液分布特点,探讨了浆液在卵石层中的扩散范围,研究了浆液扩散范围与桩承载力之间的关系。结果表明:浆液能够有效地填充桩端卵石层,注浆量的增加使得填充范围扩大,填充范围为3~4倍桩径时,桩的承载力改善最显著。在不均匀卵石持力层中存在一个最优注浆量,最优归一化注浆量约为2.8,若超过该最优注浆量归一化值,桩的承载力不再显著提高。单桩模型试验确定的最优注浆量与刘金砺公式[1]的预测结果接近。扫描电镜技术有助于评价桩的后注浆技术在上覆深厚软土下覆不均匀卵石的土层中的效果。展开更多
移动单线激光雷达(Laser detection and ranging,LiDAR)扫描(Mobile single-layer LiDAR scanning,MSLS)树冠叶面积估计方法使用单一视角的单线激光雷达采集树冠点云数据,获取的冠层信息不够全面,限制了树冠叶面积估计精度。本文提出一...移动单线激光雷达(Laser detection and ranging,LiDAR)扫描(Mobile single-layer LiDAR scanning,MSLS)树冠叶面积估计方法使用单一视角的单线激光雷达采集树冠点云数据,获取的冠层信息不够全面,限制了树冠叶面积估计精度。本文提出一种基于移动多线LiDAR扫描(Mobile multi-layer LiDAR scanning,MMLS)的树冠叶面积估计方法,使用多线LiDAR从多个视角采集树冠点云数据,提升树冠叶面积估计精度。首先,将多线LiDAR采集的点云数据变换到世界坐标系下,通过感兴趣区域(Region of interest,ROI)提取出树冠点云。然后,提出一种MMLS树冠点云融合方法,逐个融合单个激光器采集的树冠点云,设置距离阈值删除重复点,添加新点。最后,构建MMLS空间分辨率网格,建立基于树冠网格面积的树冠叶面积估计模型。实验使用VLP-16型多线LiDAR传感器搭建MMLS系统,设置1、1.5 m 2个测量距离和间隔45°的8个测量角度对6个具有不同冠层密度的树冠进行数据采集,共得到96个树冠样本。采用本文方法,树冠叶面积线性估计模型的均方根误差(Root mean squared error,RMSE)为0.1041 m^(2),比MSLS模型降低0.0578 m^(2),决定系数R^(2)为0.9526,比MSLS模型提高0.0675。实验结果表明,本文方法通过多线LiDAR多视角树冠点云数据采集、MMLS树冠点云融合和空间分辨率网格构建,有效提升了树冠叶面积估计精度。展开更多
文摘Purpoe: To evaluate retinal nerve fiber layer (RNFL) thickness measurements in local normal Chinese subjects of different age groups and analyse the correlation of RNFL thickness with age using scanning laser polarimetry (SLP,GDxVCC). To assess the reproducibility of RNFL thickness measurement with GDxVCC. Methods: The RNFL thickness of 67 normal subjects (123 eyes) were measured by GDxVCC. The average TSNIT parameters were calculated. The differences of RNFL thickness between sex,right and left eyes,superior and inferior were compared. The relationship between RNFL thickness and age was analyzed with correlation analysis and linear regression analysis. The intraclass correlation coefficients (ICC) of three images in every eye were calculated. Results: The average peripapillary RNFL thickness at the superior,inferior and whole ellipse regions in 123 eyes of 67 normal subjects were (70.30±6.76)(?)m,(67.35±6.77)(?)m and (56.87±4.53)(?) m,respectively. The average TNSIT standard deviation was 23.68±4.61 and the average inter-eye symmetric value was 0.86±0.11. There were significant difference of RNFL thickness between superior and inferior (t=4.952,P < 0.001). There were significant difference of inferior RNFL thickness and TNSIT standard deviation between right and left eyes (P=0.005 and 0.002),while not significant difference of superior RNFL thickness and whole mean RNFL thickness between right and left eye (P=0.086 and 0.529). There was no significant difference in TSNIT parameters between different genders. There was a slight negative correlation average RNFL thickness in superior sector with age (decreased approximately 0.15 microns per year,P=0.047) in the subjects aged below 60 years old. The ICC values of RNFL thickness were >0.8 in superior,inferior and global. Conclusions: The RNFL thickness can be measured accurately by GDxVCC and the reproducibility of RNFL thickness measurement by GDxVCC is good. There was a slight negative correlation between average RNFL thickness in superior with age. More researches on the effects of age on RNFL thickness by GDxVCC are needed.
文摘The fractal curve is proposed as a novel scanning path used in Layered Manufacturing. Aiming at a limitation that the fractal curve can only fill a square region, a method is developed to realize the trimming of fractal curve in arbitrary boundary layer by means of judging intersection points between parameterized arbitrary boundary and a FASS (space filling, self avoiding, simple and self similar) fractal curve. Accordingly, the related algorithm concerning with determining intersection points has been investigated according to the recursion feature of the fractal curve, and in the process of the fractal curve traversed, the rule of judging intersection points is ascertained as well, so that the laser scanning beam can “walk” along the fractal curve inside the desired boundary, and arbitrary contour components are fabricated.
基金X.H.gratefully acknowledges the financial support from the National Natural Science Foundation of China(Grant No.21902096)the Scientific Research Foundation of Shaanxi University of Science and Technology(Grant No.126061803)+1 种基金S.M.and B.X.thank the National Natural Science Foundation of China(Grant No.21972103)the Shanxi Provincial Key Innovative Research Team in Science and Technology(Grant No.201703D111026).
文摘The In segregation and its suppression in InGaAs/AlGaAs quantum well are investigated by using high-resolution x-ray diffraction(XRD)and photoluminescence(PL),combined with the state-of-the-art aberration corrected scanning transmission electron microscopy(Cs-STEM)techniques.To facility our study,we grow two multiple quantum wells(MQWs)samples,which are almost identical except that in sample B a thin GaAs layer is inserted in each of the InGaAs well and AlGaAs barrier layer comparing to pristine InGaAs/AlGaAs MQWs(sample A).Our study indeed shows the direct evidences that In segregation occurs in the InGaAs/AlGaAs interface,and the effect of the Ga As insertion layer on suppressing the segregation of In atoms is also demonstrated on the atomic-scale.Therefore,the atomic-scale insights are provided to understand the segregation behavior of In atoms and to unravel the underlying mechanism of the effect of GaAs insertion layer on the improvement of crystallinity,interface roughness,and further an enhanced optical performance of InGaAs/AlGaAs QWs.
文摘我国东南沿海尤其是温州地区广泛存在上覆深厚软土下覆不均匀卵石的地层。该区域的钻孔灌注桩常采用后注浆技术改善其承载性能。为了评价后注浆技术对这类地层中灌注桩承载力改善效果,开展了相应的模型试验,对比了不同注浆量对桩承载力的影响程度;并结合扫描电镜(scanning electron microscope,简称SEM)试验分析了浆液分布特点,探讨了浆液在卵石层中的扩散范围,研究了浆液扩散范围与桩承载力之间的关系。结果表明:浆液能够有效地填充桩端卵石层,注浆量的增加使得填充范围扩大,填充范围为3~4倍桩径时,桩的承载力改善最显著。在不均匀卵石持力层中存在一个最优注浆量,最优归一化注浆量约为2.8,若超过该最优注浆量归一化值,桩的承载力不再显著提高。单桩模型试验确定的最优注浆量与刘金砺公式[1]的预测结果接近。扫描电镜技术有助于评价桩的后注浆技术在上覆深厚软土下覆不均匀卵石的土层中的效果。
文摘移动单线激光雷达(Laser detection and ranging,LiDAR)扫描(Mobile single-layer LiDAR scanning,MSLS)树冠叶面积估计方法使用单一视角的单线激光雷达采集树冠点云数据,获取的冠层信息不够全面,限制了树冠叶面积估计精度。本文提出一种基于移动多线LiDAR扫描(Mobile multi-layer LiDAR scanning,MMLS)的树冠叶面积估计方法,使用多线LiDAR从多个视角采集树冠点云数据,提升树冠叶面积估计精度。首先,将多线LiDAR采集的点云数据变换到世界坐标系下,通过感兴趣区域(Region of interest,ROI)提取出树冠点云。然后,提出一种MMLS树冠点云融合方法,逐个融合单个激光器采集的树冠点云,设置距离阈值删除重复点,添加新点。最后,构建MMLS空间分辨率网格,建立基于树冠网格面积的树冠叶面积估计模型。实验使用VLP-16型多线LiDAR传感器搭建MMLS系统,设置1、1.5 m 2个测量距离和间隔45°的8个测量角度对6个具有不同冠层密度的树冠进行数据采集,共得到96个树冠样本。采用本文方法,树冠叶面积线性估计模型的均方根误差(Root mean squared error,RMSE)为0.1041 m^(2),比MSLS模型降低0.0578 m^(2),决定系数R^(2)为0.9526,比MSLS模型提高0.0675。实验结果表明,本文方法通过多线LiDAR多视角树冠点云数据采集、MMLS树冠点云融合和空间分辨率网格构建,有效提升了树冠叶面积估计精度。