BACKGROUND Infectious diseases are still one of the greatest threats to human health,and the etiology of 20%of cases of clinical fever is unknown;therefore,rapid identification of pathogens is highly important.Traditi...BACKGROUND Infectious diseases are still one of the greatest threats to human health,and the etiology of 20%of cases of clinical fever is unknown;therefore,rapid identification of pathogens is highly important.Traditional culture methods are only able to detect a limited number of pathogens and are time-consuming;serologic detection has window periods,false-positive and false-negative problems;and nucleic acid molecular detection methods can detect several known pathogens only once.Three-generation nanopore sequencing technology provides new options for identifying pathogens.CASE SUMMARY Case 1:The patient was admitted to the hospital with abdominal pain for three days and cessation of defecation for five days,accompanied by cough and sputum.Nanopore sequencing of the drainage fluid revealed the presence of orallike bacteria,leading to a clinical diagnosis of bronchopleural fistula.Cefoperazone sodium sulbactam treatment was effective.Case 2:The patient was admitted to the hospital with fever and headache,and CT revealed lung inflammation.Antibiotic treatment for Streptococcus pneumoniae,identified through nanopore sequencing of cerebrospinal fluid,was effective.Case 3:The patient was admitted to our hospital with intermittent fever and an enlarged neck mass that had persisted for more than six months.Despite antibacterial treatment,her symptoms worsened.The nanopore sequencing results indicate that voriconazole treatment is effective for Aspergillus brookii.The patient was diagnosed with mixed cell type classical Hodgkin's lymphoma with infection.CONCLUSION Three-generation nanopore sequencing technology allows for rapid and accurate detection of pathogens in human infectious diseases.展开更多
Objective:To surveill emerging variants by nanopore technology-based genome sequencing in different COVID-19 waves in Sri Lanka and to examine the association with the sample characteristics,and vaccination status.Met...Objective:To surveill emerging variants by nanopore technology-based genome sequencing in different COVID-19 waves in Sri Lanka and to examine the association with the sample characteristics,and vaccination status.Methods:The study analyzed 207 RNA positive swab samples received to sequence laboratory during different waves.The N gene cut-off threshold of less than 30 was considered as the major inclusion criteria.Viral RNA was extracted,and elutes were subjected to nanopore sequencing.All the sequencing data were uploaded in the publicly accessible database,GISAID.Results:The Omicron,Delta and Alpha variants accounted for 58%,22%and 4%of the variants throughout the period.Less than 1%were Kappa variant and 16%of the study samples remained unassigned.Omicron variant was circulated among all age groups and in all the provinces.Ct value and variants assigned percentage was 100%in Ct values of 10-15 while only 45%assigned Ct value over 25.Conclusions:The present study examined the emergence,prevalence,and distribution of SARS-CoV-2 variants locally and has shown that nanopore technology-based genome sequencing enables whole genome sequencing in a low resource setting country.展开更多
Next-generation sequencing(NGS) technology is capable of sequencing millions or billions of DNA molecules simultaneously.Therefore, it represents a promising tool for the analysis of molecular targets for the initial ...Next-generation sequencing(NGS) technology is capable of sequencing millions or billions of DNA molecules simultaneously.Therefore, it represents a promising tool for the analysis of molecular targets for the initial diagnosis of disease, monitoring of disease progression, and identifying the mechanism of drug resistance. On behalf of the Tumor Biomarker Committee of the Chinese Society of Clinical Oncology(CSCO) and the China Actionable Genome Consortium(CAGC), the present expert group hereby proposes advisory guidelines on clinical applications of NGS technology for the analysis of cancer driver genes for precision cancer therapy. This group comprises an assembly of laboratory cancer geneticists, clinical oncologists, bioinformaticians,pathologists, and other professionals. After multiple rounds of discussions and revisions, the expert group has reached a preliminary consensus on the need of NGS in clinical diagnosis, its regulation, and compliance standards in clinical sample collection. Moreover, it has prepared NGS criteria, the sequencing standard operation procedure(SOP), data analysis, report, and NGS platform certification and validation.展开更多
Infectious diseases are an enormous public health burden and a growing threat to human health worldwide.Emerging or classic recurrent pathogens,or pathogens with resistant traits,challenge our ability to diagnose and ...Infectious diseases are an enormous public health burden and a growing threat to human health worldwide.Emerging or classic recurrent pathogens,or pathogens with resistant traits,challenge our ability to diagnose and control infectious diseases.Nanopore sequencing technology has the potential to enhance our ability to diagnose,interrogate,and track infectious diseases due to the unrestricted read length and system portability.This review focuses on the application of nanopore sequencing technology in the clinical diagnosis of infectious diseases and includes the following:(i)a brief introduction to nanopore sequencing technology and Oxford Nanopore Technologies(ONT)sequencing platforms;(ii)strategies for nanopore-based sequencing technologies;and(iii)applications of nanopore sequencing technology in monitoring emerging pathogenic microorganisms,molecular detection of clinically relevant drug-resistance genes,and characterization of disease-related microbial communities.Finally,we discuss the current challenges,potential opportunities,and future outlook for applying nanopore sequencing technology in the diagnosis of infectious diseases.展开更多
With the rapid development of histological techniques and the widespread applica-tion of single-cell sequencing in eukaryotes,researchers desire to explore individual microbial.genotypes and functional expression,whic...With the rapid development of histological techniques and the widespread applica-tion of single-cell sequencing in eukaryotes,researchers desire to explore individual microbial.genotypes and functional expression,which deepens our understanding of microorganisms.In this review,the history of the development of microbial detection technologies was revealed and the difficulties in the application of single-cell sequencing in microorganisms were dissected as well.Moreover,the characteristics of the currently emerging microbial single-cell sequencing(Microbe-seq)technology were summarized,and the prospects of the application of Microbe-seq in microorganisms were distilled based on the current development status.Despite its mature development,the Microbe-seq technology was still in the optimization stage.A retrospective study was conducted,aiming to promote the widespread application of single-cell sequencing in microorganisms and facilitate further improvement in the technol-ogy.展开更多
Only in recent years, the draft sequences for several agricultural animals have been assembled. Assembling an individual animal's entire genome sequence or specific region(s) of interest is increasingly important f...Only in recent years, the draft sequences for several agricultural animals have been assembled. Assembling an individual animal's entire genome sequence or specific region(s) of interest is increasingly important for agricultura researchers to perform genetic comparisons between animals with different performance. We review the current status for several sequenced agricultural species and suggest that next generation sequencing (NGS) technology with decreased sequencing cost and increased speed of sequencing can benefit agricultural researchers. By taking advantage of advanced NGS technologies, genes and chromosomal regions that are more labile to the influence of environmental factors could be pinpointed. A more long term goal would be addressing the question of how animals respond at the molecular and cellular levels to different environmental models (e.g. nutrition). Upon revealing important genes and gene-environment interactions, the rate of genetic improvement can also be accelerated. It is clear that NGS technologies will be able to assist animal scientists to efficiently raise animals and to better prevent infectious diseases so that overall costs of animal production can be decreased.展开更多
基金Supported by Research and Development Funding for Medical and Health Institutions,No.2021YL007.
文摘BACKGROUND Infectious diseases are still one of the greatest threats to human health,and the etiology of 20%of cases of clinical fever is unknown;therefore,rapid identification of pathogens is highly important.Traditional culture methods are only able to detect a limited number of pathogens and are time-consuming;serologic detection has window periods,false-positive and false-negative problems;and nucleic acid molecular detection methods can detect several known pathogens only once.Three-generation nanopore sequencing technology provides new options for identifying pathogens.CASE SUMMARY Case 1:The patient was admitted to the hospital with abdominal pain for three days and cessation of defecation for five days,accompanied by cough and sputum.Nanopore sequencing of the drainage fluid revealed the presence of orallike bacteria,leading to a clinical diagnosis of bronchopleural fistula.Cefoperazone sodium sulbactam treatment was effective.Case 2:The patient was admitted to the hospital with fever and headache,and CT revealed lung inflammation.Antibiotic treatment for Streptococcus pneumoniae,identified through nanopore sequencing of cerebrospinal fluid,was effective.Case 3:The patient was admitted to our hospital with intermittent fever and an enlarged neck mass that had persisted for more than six months.Despite antibacterial treatment,her symptoms worsened.The nanopore sequencing results indicate that voriconazole treatment is effective for Aspergillus brookii.The patient was diagnosed with mixed cell type classical Hodgkin's lymphoma with infection.CONCLUSION Three-generation nanopore sequencing technology allows for rapid and accurate detection of pathogens in human infectious diseases.
文摘Objective:To surveill emerging variants by nanopore technology-based genome sequencing in different COVID-19 waves in Sri Lanka and to examine the association with the sample characteristics,and vaccination status.Methods:The study analyzed 207 RNA positive swab samples received to sequence laboratory during different waves.The N gene cut-off threshold of less than 30 was considered as the major inclusion criteria.Viral RNA was extracted,and elutes were subjected to nanopore sequencing.All the sequencing data were uploaded in the publicly accessible database,GISAID.Results:The Omicron,Delta and Alpha variants accounted for 58%,22%and 4%of the variants throughout the period.Less than 1%were Kappa variant and 16%of the study samples remained unassigned.Omicron variant was circulated among all age groups and in all the provinces.Ct value and variants assigned percentage was 100%in Ct values of 10-15 while only 45%assigned Ct value over 25.Conclusions:The present study examined the emergence,prevalence,and distribution of SARS-CoV-2 variants locally and has shown that nanopore technology-based genome sequencing enables whole genome sequencing in a low resource setting country.
基金supported by grants from Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer (Grant No. 2017B030314120)General Research Project of Guangzhou Science and Technology Bureau (Grant No. 201607010391)+1 种基金National Key Research and Development Program of China (Grant No. 2016YFC1303800)Guangdong Provincial Applied S&T R&D Program (Grant No. 2016B020237006)
文摘Next-generation sequencing(NGS) technology is capable of sequencing millions or billions of DNA molecules simultaneously.Therefore, it represents a promising tool for the analysis of molecular targets for the initial diagnosis of disease, monitoring of disease progression, and identifying the mechanism of drug resistance. On behalf of the Tumor Biomarker Committee of the Chinese Society of Clinical Oncology(CSCO) and the China Actionable Genome Consortium(CAGC), the present expert group hereby proposes advisory guidelines on clinical applications of NGS technology for the analysis of cancer driver genes for precision cancer therapy. This group comprises an assembly of laboratory cancer geneticists, clinical oncologists, bioinformaticians,pathologists, and other professionals. After multiple rounds of discussions and revisions, the expert group has reached a preliminary consensus on the need of NGS in clinical diagnosis, its regulation, and compliance standards in clinical sample collection. Moreover, it has prepared NGS criteria, the sequencing standard operation procedure(SOP), data analysis, report, and NGS platform certification and validation.
基金supported by CAMS Innovation Fund for Medical Sciences (CIFMS)[2021-I2M-1-038]
文摘Infectious diseases are an enormous public health burden and a growing threat to human health worldwide.Emerging or classic recurrent pathogens,or pathogens with resistant traits,challenge our ability to diagnose and control infectious diseases.Nanopore sequencing technology has the potential to enhance our ability to diagnose,interrogate,and track infectious diseases due to the unrestricted read length and system portability.This review focuses on the application of nanopore sequencing technology in the clinical diagnosis of infectious diseases and includes the following:(i)a brief introduction to nanopore sequencing technology and Oxford Nanopore Technologies(ONT)sequencing platforms;(ii)strategies for nanopore-based sequencing technologies;and(iii)applications of nanopore sequencing technology in monitoring emerging pathogenic microorganisms,molecular detection of clinically relevant drug-resistance genes,and characterization of disease-related microbial communities.Finally,we discuss the current challenges,potential opportunities,and future outlook for applying nanopore sequencing technology in the diagnosis of infectious diseases.
基金supported by the Key Research and Development Project of Zhejiang Province,China(No.2022C03026)the Zhejiang Medical and Health Technology Project(China)(No.2023RC274)Public Welfare Technology Application Research Program of Huzhou,China(No.2021GY15).
文摘With the rapid development of histological techniques and the widespread applica-tion of single-cell sequencing in eukaryotes,researchers desire to explore individual microbial.genotypes and functional expression,which deepens our understanding of microorganisms.In this review,the history of the development of microbial detection technologies was revealed and the difficulties in the application of single-cell sequencing in microorganisms were dissected as well.Moreover,the characteristics of the currently emerging microbial single-cell sequencing(Microbe-seq)technology were summarized,and the prospects of the application of Microbe-seq in microorganisms were distilled based on the current development status.Despite its mature development,the Microbe-seq technology was still in the optimization stage.A retrospective study was conducted,aiming to promote the widespread application of single-cell sequencing in microorganisms and facilitate further improvement in the technol-ogy.
基金supported by the National Institutes of Health Grant #U54 DA021519
文摘Only in recent years, the draft sequences for several agricultural animals have been assembled. Assembling an individual animal's entire genome sequence or specific region(s) of interest is increasingly important for agricultura researchers to perform genetic comparisons between animals with different performance. We review the current status for several sequenced agricultural species and suggest that next generation sequencing (NGS) technology with decreased sequencing cost and increased speed of sequencing can benefit agricultural researchers. By taking advantage of advanced NGS technologies, genes and chromosomal regions that are more labile to the influence of environmental factors could be pinpointed. A more long term goal would be addressing the question of how animals respond at the molecular and cellular levels to different environmental models (e.g. nutrition). Upon revealing important genes and gene-environment interactions, the rate of genetic improvement can also be accelerated. It is clear that NGS technologies will be able to assist animal scientists to efficiently raise animals and to better prevent infectious diseases so that overall costs of animal production can be decreased.