期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Geophysical Mapping, Geochemical Evidence and Mineralogy for Nuweibi Rare Metal Albite Granite, Eastern Desert, Egypt 被引量:3
1
作者 Ibrahim Gaafar 《Open Journal of Geology》 2014年第4期108-136,共29页
The present study aims to shed light on the rare metals of Nuweibiareaalbite granite in the Eastern Desert through the chemical analyses of the two types of fine-grained albite granite (FAG) and medium-grained albite ... The present study aims to shed light on the rare metals of Nuweibiareaalbite granite in the Eastern Desert through the chemical analyses of the two types of fine-grained albite granite (FAG) and medium-grained albite granite (MAG) in addition to mineralogical studies as well as ground spectrometric survey and aeromagnetic mapping. On the basis of ground spectrometric measurements K, eUand eTh distribution maps were obtained. The concentration of K, U and Th content shows maxima (4.5%, 13 ppm and 27 ppm on average, respectively) in the FAG, and (4.5%, 10 ppm and 35 ppm on average) in the MAG. The eU/eTh ratio significantly increases in FAG with higher magma differentiation than MAG reaching 0.63. This paper uses magnetic geophysical methods to investigate geometry and sense of motion across the Nuweibi area. The interpreted structures from the magnetic maps are characterized by two main intersecting sets of NW-SE and NE-SW trending faults in addition to other three minor faults that trend in N-S, NNW-SSE and ENE-WSW directions. The NW-SE trending faults represent the recent sets in the study area where they are dissected and displaced by the other old faults. The Werner depth map shows the interface depths of the granite and basement rocks that extend to great depths ranging from 10 to 380 m. FAG is extended underneath most of the surrounding schist rocks because of their attributed low magnetic intensity that confirmed also with drilling. Microscope and Microprobe analyses indicated that the most important radioactive minerals include uranothorite, thorite, zircon, and monazite. Columbite group minerals represent the most common Nb-Ta host in Nuweibi-albite granites that contain significant levels of Ta (up to 65.4 wt. % Ta2O5) and Nb (up to 60 wt. % Nb2O5), with Ta/(Ta+Nb) ratio ranging from 0.17 to 0.84. Columbite group minerals are represented mostly by columbite-(Mn) and tantalite-(Mn), with Mn/(Mn+Fe) ratio ranging from 0.42 to 0.89. Ixiolite, wodgnite and tapiolite-(Mn) were found only in the FAG indicating the final stages of the evolution of parental granitic magma. The U-Th and U-K variation diagrams suggested that magmatic processes controlled the distribution of these elements. The Scanning Electron-microprobe analyses reveal variable compositions and extents between the MAG and FAG in the Nb, Ta-Ti, Sn-Fe, Mn triangular plot. It is worthy to be noted that because of the higher Ta/Nb ratio in the tapiolite-Mn and ixiolite of FAG in comparison with the coexisting Mn-columbite in the MAG, levels of HfO2 greater than 15% and even attaining 23%, characterized the hafnium zircon in the Nwueibialbite-enriched facies. There is a close correlation between Hf/(Hf + Zr) and Ta/(Nb + Ta) which seems mainly associated with the FAG. 展开更多
关键词 ALBITE Spectrometric Magnetic Columbo-Tantalite Ixiolite thorite
下载PDF
Low-temperature alteration of uranium–thorium bearing minerals and its significance in neoformation of radioactive minerals in stream sediments of Wadi El-Reddah, North Eastern Desert, Egypt 被引量:1
2
作者 O.A.Ebyan H.A.Khamis +2 位作者 A.R.Baghdady M.G.El-Feky N.S.Abed 《Acta Geochimica》 EI CAS CSCD 2020年第1期96-115,共20页
The stream sediments of Wadi El Reddah(North Eastern Desert,Egypt)are geochemically and mineralogically investigated.Their content of radioactive and other heavy minerals is mainly represented by thorite,uranothorite,... The stream sediments of Wadi El Reddah(North Eastern Desert,Egypt)are geochemically and mineralogically investigated.Their content of radioactive and other heavy minerals is mainly represented by thorite,uranothorite,zircon,monazite,xenotime,columbite,fergusonite,and unknown rare earth elements(REEs)bearing minerals as well as cassiterite.Special emphasis on REE content of thorite,uranothorite,zircon and xenotime has been done to correlate them with the increase of uranium contents in these sediments.The key evidence for the presence lowtemperature alteration processes includes the presence of some zircon crystals as remnants after complete dissolution of the overgrowth zircon in severe acidic environment,the sulphur content,biogenic minerals,occurrence of unusual minerals as cassiterite pore filling in zircon,variation in the REEs content from the surrounding granites to the stream sediments and the abundance of monazite in the surrounding granites.Most minerals are partially and/or completely altered,which indicated by the pseudomorphism of zircon by xenotime,thorite,and uranothorite. 展开更多
关键词 Zircon thorite Xenotime Radioactive minerals Low-temperature alteration Wadi El-Reddah
下载PDF
Preliminary Study on HFSE Mineralization in the Peralkaline Granites of Nusab El Balgum Area, South Western Desert, Egypt 被引量:1
3
作者 S. A. Abu Elatta H. M. Assran A. A. Ahmed 《Geomaterials》 2013年第3期90-101,共12页
Nusab El Balgum mass complex represents one of peralkaline volcanic activity phenomena in the south Western Desert of Egypt, which is typical for within-plate event, which formed in Mesozoic period. It consists of aci... Nusab El Balgum mass complex represents one of peralkaline volcanic activity phenomena in the south Western Desert of Egypt, which is typical for within-plate event, which formed in Mesozoic period. It consists of acidic volcanic (rhyolite and their pyroclastics) and sub-volcanic granitic rocks (incomplete ring, small stock and dyke of a peralkaline aphanites) as well as dykes (trachyte, bostonite, rhyodacite, rhyolite and porphyritic rhyolite) variable in thickness and the most of run in NNE-SSW trend. The peralkaline granitic rocks, especially those located at the southwestern part of this mass are characterized by extreme enrichments in HFSE (rare metals such as Zr, Nb, U and Th and REEs) which are the highest concentrations (e.g., >1% Zr, 0.5% Nb and 2.6% total REEs, Y up to 1%, eU up to 300 ppm and eTh up to 1100 ppm). The rare metal bearing minerals are thorite, uranothorite, autunite, amorphous secondary uranium, zircon and ferrocolumbite, while the REEs bearing minerals are bastnaesite, monazite and xenotime. The positive relations in all of the binary diagrams of Zr versus Nb, Y, eU and eTh, Nb versus Y, eU and eTh, Y versus eU and eTh in post magmatic intensely hematised peralkaline granites indicated that, this process is responsible for the enrichment in these HFSE. The chondrite-normalized pattern of high-altered peralkaline granites indicates: 1) higher LREEs enriched pattern (La/Gd = 11.34 and 12.25) means the alteration processes taking place under open system and these rocks evolved from magma of lithospheric rifting, 2) ΔCe 2O, and thus very low viscosity, despite its low temperature (ments, as indicated by strong negative Eu anomalies;and c) it had abundances of HFSE cations. Redistribution of elements took place by post magmatic hydrothermal solutions. 展开更多
关键词 PERALKALINE GRANITES thorite Amorphous Secondary Uranium Compatible Elements LITHOSPHERIC RIFTING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部