It is still a challenging task to accurately and temperature-continuously express the thermodynamic properties and phase equilibrium behaviors of the salt-lake brine with multi-component,multitemperature and high conc...It is still a challenging task to accurately and temperature-continuously express the thermodynamic properties and phase equilibrium behaviors of the salt-lake brine with multi-component,multitemperature and high concentration.The essential subsystem of sulfate type brine,aqueous Li^(+)-Na^(+)-K^(+)-SO_(4)^(2-) and its subsystems across a temperature range from 250 K to 643 K are investigated with the improved comprehensive thermodynamic model.Liquid parameters(Δg_(IJ),Δh_(IJ),and ΔC_(p,IJ))associated with the contributions of Gibbs energy,enthalpy,and heat capacity to the binary interaction parameters,i.e.the temperature coefficients of eNRTL parameters formulated with a Gibbs Helmholtz expression,are determined via multi-objective optimization method.The solid constantsΔ_(f)G_(k)°^((298.15))andΔ_(f)H_(k)°^((298.15))of11 solid species occurred in the quaternary system are rebuilt from multi-temperature solubilities.The modeling results show the accurate representation of(1)solution properties and binary phase diagram at temperature ranges from eutectic points to 643 K;(2)isothermal phase diagrams for Li_(2)SO_(4)-Na_(2)SO_(4)-H_(2)O,Li_(2)SO_(4)-K_(2)SO_(4)-H_(2)O and Na_(2)SO_(4)-K_(2)SO_(4)-H_(2)O ternary systems.The predicted results of complete structure and polythermal phase diagram of ternary systems and the isothermal phase diagrams of quaternary system excellently match with the experimental data.展开更多
Modeling of the roughness in micro-nano scale and its influence have not been fully investigated, however the roughness will cause amplitude and phase errors of the radiating slot, and decrease the precision and effic...Modeling of the roughness in micro-nano scale and its influence have not been fully investigated, however the roughness will cause amplitude and phase errors of the radiating slot, and decrease the precision and efficiency of the SWA in Ku-band. Firstly, the roughness is simulated using the electromechanical coupled(EC) model. The relationship between roughness and the antenna's radiation properties is obtained. For verification, an antenna proto- type is manufactured and tested, and the simulation method is introduced. According to the prototype, a contrasting experiment dealing with the flatness of the radiating plane is conducted to test the simulation method. The advantage of the EC model is validated by comparisons of the EC model and two classical roughness models (sine wave and fractal function), which shows that the EC model gives a more accurate description model for roughness, the maxi- mum error is 13%. The existence of roughness strongly broadens the beamwidth and raises the side-lobe level of SWA, which is 1.2 times greater than the ideal antenna. In addition, effect of the EC model's evaluation indices is investigated, the most affected scale of the roughness is found, which is 1/10 of the working wavelength. The proposed research provides the instruction for antenna designing and manufacturing.展开更多
A phase field model is developed to simulate the grain evolution of 17-4PH steel during cyclic heat treatment (CHT). Our simulations successfully reproduce the grain morphologies of every CHT. In the process of ever...A phase field model is developed to simulate the grain evolution of 17-4PH steel during cyclic heat treatment (CHT). Our simulations successfully reproduce the grain morphologies of every CHT. In the process of every CHT, phase transformation recrystallization happens. The recrystallized grains appear mainly on the original grain boundaries. The average grain size of 13.2 μm obtained by 1040 ℃×1 h solution treatment for this experimental steel can be refined to 2.2 μm after five CHT's. Furthermore, the effects of phenomenological parameters in our model are discussed.展开更多
基金financial support of the National Natural Science Foundation of China(U1707602,U1407204)Yangtze Scholars and Innovative Research Team in University of Education of China,the Innovative Research Team of Tianjin Municipal Education Commission(TD125004)。
文摘It is still a challenging task to accurately and temperature-continuously express the thermodynamic properties and phase equilibrium behaviors of the salt-lake brine with multi-component,multitemperature and high concentration.The essential subsystem of sulfate type brine,aqueous Li^(+)-Na^(+)-K^(+)-SO_(4)^(2-) and its subsystems across a temperature range from 250 K to 643 K are investigated with the improved comprehensive thermodynamic model.Liquid parameters(Δg_(IJ),Δh_(IJ),and ΔC_(p,IJ))associated with the contributions of Gibbs energy,enthalpy,and heat capacity to the binary interaction parameters,i.e.the temperature coefficients of eNRTL parameters formulated with a Gibbs Helmholtz expression,are determined via multi-objective optimization method.The solid constantsΔ_(f)G_(k)°^((298.15))andΔ_(f)H_(k)°^((298.15))of11 solid species occurred in the quaternary system are rebuilt from multi-temperature solubilities.The modeling results show the accurate representation of(1)solution properties and binary phase diagram at temperature ranges from eutectic points to 643 K;(2)isothermal phase diagrams for Li_(2)SO_(4)-Na_(2)SO_(4)-H_(2)O,Li_(2)SO_(4)-K_(2)SO_(4)-H_(2)O and Na_(2)SO_(4)-K_(2)SO_(4)-H_(2)O ternary systems.The predicted results of complete structure and polythermal phase diagram of ternary systems and the isothermal phase diagrams of quaternary system excellently match with the experimental data.
基金Supported by National Natural Science Foundation of China(Grant Nos.51305322,51405364,51475348)
文摘Modeling of the roughness in micro-nano scale and its influence have not been fully investigated, however the roughness will cause amplitude and phase errors of the radiating slot, and decrease the precision and efficiency of the SWA in Ku-band. Firstly, the roughness is simulated using the electromechanical coupled(EC) model. The relationship between roughness and the antenna's radiation properties is obtained. For verification, an antenna proto- type is manufactured and tested, and the simulation method is introduced. According to the prototype, a contrasting experiment dealing with the flatness of the radiating plane is conducted to test the simulation method. The advantage of the EC model is validated by comparisons of the EC model and two classical roughness models (sine wave and fractal function), which shows that the EC model gives a more accurate description model for roughness, the maxi- mum error is 13%. The existence of roughness strongly broadens the beamwidth and raises the side-lobe level of SWA, which is 1.2 times greater than the ideal antenna. In addition, effect of the EC model's evaluation indices is investigated, the most affected scale of the roughness is found, which is 1/10 of the working wavelength. The proposed research provides the instruction for antenna designing and manufacturing.
基金supported by National Natural Science Foundation of China(No.51071061)NSAF(No.11176011)
文摘A phase field model is developed to simulate the grain evolution of 17-4PH steel during cyclic heat treatment (CHT). Our simulations successfully reproduce the grain morphologies of every CHT. In the process of every CHT, phase transformation recrystallization happens. The recrystallized grains appear mainly on the original grain boundaries. The average grain size of 13.2 μm obtained by 1040 ℃×1 h solution treatment for this experimental steel can be refined to 2.2 μm after five CHT's. Furthermore, the effects of phenomenological parameters in our model are discussed.