The Makran accretionary wedge has the smallest subduction angle among any accretionary prism in the world. The factors controlling the spacing and morphological development of its deep thrust faults, as well as the fo...The Makran accretionary wedge has the smallest subduction angle among any accretionary prism in the world. The factors controlling the spacing and morphological development of its deep thrust faults, as well as the formation mechanism of shallow normal faults, remain unclear. Meanwhile, the factors affecting the continuity of plane faults must be comprehensively discussed. Clarifying the development characteristics and deformation mechanisms of the Makran accretionary wedge is crucial to effectively guide the exploration of gas hydrate deposits in the area. This study aims to interpret seismic data to identify typical structures in the Makran accretionary wedge, including deep imbricate thrust faults, shallow and small normal faults, wedge-shaped piggyback basins, mud diapirs with fuzzy and disorderly characteristics of reflection, décollements with a northward tilt of 1° – 2°, and large seamounts. Physical simulation-based experiments are performed to comprehensively analyze the results of the plane, section, and slices of the wedge. Results reveal that the distances between and shapes of thrust faults in the deep parts of the Makran accretionary wedge are controlled by the bottom décollement. The uplift of the thrust fault-related folds and the upwelling of the mud diapirs primarily contribute to the formation of small normal faults in the shallow part of the area. The mud diapirs originate from plastic material at the bottom, while those that have developed in the area near the trench are larger. Seamounts and mud diapirs break the continuity of fault plane distribution.展开更多
The deep Lower Jurassic Ahe Formation(J_(1a))in the Dibei–Tuzi area of the Kuqa Depression has not been extensively explored because of the complex distribution of fractures.A study was conducted to investigate the r...The deep Lower Jurassic Ahe Formation(J_(1a))in the Dibei–Tuzi area of the Kuqa Depression has not been extensively explored because of the complex distribution of fractures.A study was conducted to investigate the relationship between the natural fracture distribution and structural style.The J_(1a)fractures in this area were mainly high-angle shear fractures.A backward thrust structure(BTS)is favorable for gas migration and accumulation,probably because natural fractures are more developed in the middle and upper parts of a thick competent layer.The opposing thrust structure(OTS)was strongly compressed,and the natural fractures in the middle and lower parts of the thick competent layer around the fault were more intense.The vertical fracture distribution in the thick competent layers of an imbricate-thrust structure(ITS)differs from that of BTS and OTS.The intensity of the fractures in the ITS anticline is similar to that in the BTS.Fracture density in monoclinic strata in a ITS is controlled by faulting.Overall,the structural style controls the configuration of faults and anticlines,and the stress on the competent layers,which significantly affects deep gas reservoir fractures.The enrichment of deep tight sandstone gas is likely controlled by two closely spaced faults and a fault-related anticline.展开更多
In Northern China, sandstone-type uranium (U) deposits are mostly developed in Mesozoic-Cenozoic basins. These U deposits are usually hosted in unvarying horizons within the basins and exhibit typical U-forming sedi...In Northern China, sandstone-type uranium (U) deposits are mostly developed in Mesozoic-Cenozoic basins. These U deposits are usually hosted in unvarying horizons within the basins and exhibit typical U-forming sedimentary associations, which is referred to as U-bearing rock series. This study describes the structural features of U-bearing rock series within the main Mesozoic-Cenozoic U-producing continental basins in Kazakhstan, Uzbekistan, and Russia in the western segment of the Central Asian Metallogenic Belt (CAMB), and Northern China in the eastern segment of the CAMB. We analyze the basic structural conditions and sedimentary environments of U-bearing rock series in Northern China and classify their structural styles in typical basins into river valley, basin margin, and intrabasin uplift margin types. The intrabasin uplift margin structural style proposed in this study can be used to indicate directions for the exploration of sandstone-type U deposits hosted in the center of a basin. At the same time, the study of structural style provides a new idea for exploring sandstone-type U deposits in Mesozoic-Cenozoic basins and it is of great significance to prospecting of sandstone-type uranium deposits.展开更多
The Triassic Jialingjiang Formation and Leikoupo Formation are characterized by thick salt layers. Three tectono-stratigraphic sequences can be identified according to detachment layers of Lower-Middle Triassic salt b...The Triassic Jialingjiang Formation and Leikoupo Formation are characterized by thick salt layers. Three tectono-stratigraphic sequences can be identified according to detachment layers of Lower-Middle Triassic salt beds in the northern Sichuan Basin, i.e. the sub-salt sequence composed of Sinian to the Lower Triassic Feixianguan Formation, the salt sequence of the Lower Triassic Jialingjiang Formation and Mid-Triassic Leikoupou Formation, and the supra-salt sequence composed of continental clastics of the Upper-Triassic Xujiahe Formation, Jurassic and Cretaceous. A series of specific structural styles, such as intensively deformed belt of basement-involved imbricated thrust belt, basement-involved and salt-detached superimposed deformed belt, buried salt-related detached belt, duplex, piling triangle zone and pop-up, developed in the northern Sichuan Basin. The relatively thin salt beds, associated with the structural deformation of the northern Sichuan Basin, might act as a large decollement layer. The deformation mechanisms in the northern Sichuan Basin included regional compression and shortening, plastic flow and detachment, tectonic upwelling and erosion, gravitational sliding and spreading. The source rocks in the northern Sichuan Basin are strata underlying the salt layer, such as the Cambrian, Silurian and Permian. The structural deformation related to the Triassic salt controlled the styles of traps for hydrocarbon. The formation and development of hydrocarbon traps in the northern Sichuan Basin might have a bearing upon the Lower-Middle Triassic salt sequences which were favorable to the hydrocarbon accumulation and preservation. The salt layers in the Lower-Middle Triassic formed the main cap rocks and are favorable for the accumulation and preservation of hydrocarbon.展开更多
The Longmenshan thrust system consists of two major groups of structural styles according to the depth of their involvement: basement thrusts-compressional fault blocks; fold-thrust system in the cover. In cross-secti...The Longmenshan thrust system consists of two major groups of structural styles according to the depth of their involvement: basement thrusts-compressional fault blocks; fold-thrust system in the cover. In cross-section, the Longmenshan structural belt is divided into 5 zones. The propagation of the Longmenshan thrust system is piggy-back due to pushing at the early stage and overstep due to gravity sliding at the late stage. Balanced cross-sections and palinspastic reconstruction reveal that the total sliding displacement of the thrust system amounts to 120 km. The tectonic evolution of the Tethys domain in western Sichuan has experienced 5 stages: continental break-up; ocean-continent subduction ; continent-arc collision; orogenic thrusting; uplift of western Sichuan.展开更多
The occurrence of coal-bearing strata in a variety of coal-bearing basins of China is characterized by late tectonic deformation and remarkable spatial and geochronologic differences.The main controlling factors,which...The occurrence of coal-bearing strata in a variety of coal-bearing basins of China is characterized by late tectonic deformation and remarkable spatial and geochronologic differences.The main controlling factors,which determine the tectonic framework of coalfields,include the geodynamic environment,tectonic evolution,deep structures,tectonic stress,and lithologic combination of the coal measures.The Chinese continent has experienced multi-stage tectonic movements since the Late Paleozoic.The spatial and temporal heterogeneity of its continental tectonic evolution,the complexity of its basement properties,and its stratigraphic configurations control the tectonic framework of its coalfields’present complex and orderly patterns.The concept of coal occurrence structural units is proposed in this paper and is defined as the structural zoning of coal occurrence.China’s coalfields are divided into five coal occurrence structural areas,and the structural characteristics of the coalfields in five main coal occurrence areas throughout the country are summarized.Based on the analysis of the relationship between the structure characteristics and occurrence of coal in these coalfields,the coal-controlling structures are divided into six groups:extensional structural styles,compressional structural styles,shearing and rotational structural styles,inverted structural styles,sliding structural styles,and syn-depositional structural styles.In addition,the distribution of coal-controlling structural styles is briefly summarized in this paper.展开更多
The Kuqa and the Southern Junggar foreland thrust belts, which lie to the southern and northern Tianshan, respectively, were formed under a strong compressional tectonic setting. Due to the differential propagation an...The Kuqa and the Southern Junggar foreland thrust belts, which lie to the southern and northern Tianshan, respectively, were formed under a strong compressional tectonic setting. Due to the differential propagation and deformation under the control of the décollement horizon, the structural deformation styles differ in the Kuqa and Southern Junggar thrust belts. Imbricated stacking is developed in the Kuqa thrust belt, forming a piggyback imbricated pattern of faulted anticline and fault-block structural assemblage dominated by salt structures. In contrast, wedge-shaped thrusts are developed in Southern Junggar, mainly forming vertical laminated patterns of multi-wedge-structure stacks strongly influenced by the décollement horizons. The different deformation patterns and structural styles of the north and south of Tian Shan control the contrasting characteristics of hydrocarbon accumulation in the foreland thrust belts of the Kuqa and the Southern Junggar thrust belts, including the variance in the hydrocarbon trap types, pathway systems and hydrocarbon-bearing horizons. Proven by the hydrocarbon accumulation research and exploration achievements, recent exploration targets should focus on sub-salt piggyback imbricated structural patterns in the Kuqa and the deep laminated patterns in the Southern Junggar thrust belt.展开更多
The Khalfani anticline is located in the Coastal Fars (Zagros, adjacent Persian Gulf). This anticline with Northwest-Southeast trend is a fault bend fold. In the study area, the Khalfani anticline has increased elevat...The Khalfani anticline is located in the Coastal Fars (Zagros, adjacent Persian Gulf). This anticline with Northwest-Southeast trend is a fault bend fold. In the study area, the Khalfani anticline has increased elevation from West to East with three distinct humps. The major faults in the study area are the Hendurabi and the Razak sinistral strike slip faults. Because analysis of fold and their folding styles in different parts system is important, the analysis of folding style elements is necessary for structural studies. The main aim of this research is structural style analysis based on fold style elements in the Khalfani anticline. This analysis is important for progress in hydrocarbons exploration in the Coastal Fars area. In this research, we used Tectonics FP and Global Mapper Software for preparing some data in our study. In addition, we used the common classification of folds for our research. Based on given results, the folding pattern of this anticline has indicated that the fold style is same in different parts of the Khalfani anticline. In the study area, based on classifications of fold in different methods, fold style is same together. Fold, with close sideways requires special attention as structural view;then the Khalfani Anticline with close style in all parts has special deformation and folding style. It seems that in the study area, folding style and variation of structural style have been created by effect of the Razak and the Hendurabi sinistral strike slip fault. Because these faults are basement or deep-seated faults, special folding style and special deformation can be formed in the study area. In addition, the Khalfani anticline in the study area has restricted within the Razak and the Hendurabi sinistral strike slip faults.展开更多
Qaidam basin is located at northeast Qinghai—Xizang (Tibet) plateau, and surrounded by east Kunlun, south Qilian and Altun mountain systems. The purpose of this paper is to study the Cenozoic basin evolutionary stage...Qaidam basin is located at northeast Qinghai—Xizang (Tibet) plateau, and surrounded by east Kunlun, south Qilian and Altun mountain systems. The purpose of this paper is to study the Cenozoic basin evolutionary stages, structural styles of the Qaidam, and the denudation in adjacent mountain systems through seismic profile interpretation and complemented by field observation. The Qaidam basin has experienced two tectonic stages of Paleogene—early Miocene (65~12Ma) and late Miocene—present (12~0Ma). The former is characterized by differential uplift of the mountains and subsidence of the basin, and the latter by intense compression, wrench, thrusting and folding. The compressional structural styles are mainly distributed in the Circle Hero—Range Depression of southwest Qaidam, such as Nanyishan, Youquanzi, Younan, Youshashan anticline belts and thrust faults. The wrench structural styles of the northern Qaidam include en echelon uplifts (fault—block outcrops) such as Seshitengshan, Luliangshan, Xitieshan and Eimnikshan, which are mainly composed of pre\|Sinian and Paleozoic rocks; en echelon anticlines such as Lenghu—Nanbaxian belts; and en echelon depressions such as Kunteyi, Senan and Yibei depressions, which are mainly composed of Mesozoic and Cenozoic rocks.展开更多
The Fushan Depression is a half-graben rifted sub-basin located in the southeast of the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the sub-...The Fushan Depression is a half-graben rifted sub-basin located in the southeast of the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the sub-basin. Using three-dimensional(3-D)seismic data and logging data over the sub-basin, we analyzed structural styles and sedimentary characteristics of the Liushagang sequence. Five types of structural styles were defined: ancient horst, traditional slope, flexure slope-break, faulted slope-break and multiple-stage faults slope, and interpretations for positions, background and development formations of each structural style were discussed. Structural framework across the sub-basin reveals that the most remarkable tectonic setting is represented by the central transfer zone(CTZ) which divides the sub-basin into two independent depressions, and two kinds of sequence architectures are summarized:(i) the western multi-stage faults slope;(ii) the eastern flexure slope break belt. Combined with regional stress field of the Fushan Depression, we got plane combinations of the faults, and finally built up plan distribution maps of structural system for main sequence. Also, we discussed the controlling factors mainly focused on subsidence history and background tectonic activities such as volcanic activity and earthquakes. The analysis of structural styles and tectonic evolution provides strong theoretical support for future prospecting in the Fushan subbasin and other similar rifted basins of the Beibuwan Basin in South China Sea.展开更多
A structural cross-section constructed across the Zagros Fold-Thrust Belt covering the Abadan Plain, Dezful Embayment, and Izeh Zone applied 2D and 3D seismic data, well data, surface and subsurface geological maps, s...A structural cross-section constructed across the Zagros Fold-Thrust Belt covering the Abadan Plain, Dezful Embayment, and Izeh Zone applied 2D and 3D seismic data, well data, surface and subsurface geological maps, satellite images and field reconnaissance. Besides validation and modification of the cross-section, restoration allows better understanding of the geology, structural style and stratigraphy of the Zagros basin. In the area of interest, the Hormuz basal decollement and the Gachsaran detachment play the most significant roles in the structural style and deformation of the Zagros belt. More complexity is associated with interval decollements such as Triassic evaporites, Albian shales and Eocene marls. A variety of lithotectonic units and detachment surfaces confound any estimation of shortening, which generally decreases with increasing depth. Deformation completely differs in the Abadan Plain, Dezful Embayment and Izeh Zone because of different sedimentation histories and tectonic evolution; gentle and young structures can be interpreted as pre-collisional structures of the Dezful Embayment before the Late Cretaceous. After the Late Cretaceous, the Mountain Front Fault is the main control of sedimentation and deformation in the Zagros Basin, and this completely characterizes fold style and geometry within the Dezful Embayment and the Izeh Zone.展开更多
The front of a thrust-detachment fault may have various styles such as decoupling, fold, forethrust and backthrust ones because of differences in magnitude, direction and time of the forces exerted on the fault and th...The front of a thrust-detachment fault may have various styles such as decoupling, fold, forethrust and backthrust ones because of differences in magnitude, direction and time of the forces exerted on the fault and the inhomogeneity of rock mechanical properties. They have different characteristics and are usually associated with gravity structure, inverse structure and diapir structure. These structures exist together in the same thrust-detachment fault and can influence, compensate for and convert into each other. They provide important grounds not only for the study of the dynamic state, propagation mode, evolutionary process and formation mechanism but also for the analysis of the petroleum generation, migration, accumulation and preservation and arrangement of drill holes in foreland basins.展开更多
Basin and orogenic belt belong to the same tectonic system which has close connections in spatial distribution and dynamic mechanism.Structural styles analysis of basin- range system, not only may rebuild basin- ra...Basin and orogenic belt belong to the same tectonic system which has close connections in spatial distribution and dynamic mechanism.Structural styles analysis of basin- range system, not only may rebuild basin- range coupling process and landscape evolution of orogenic belt and its adjacent basin, but also become the foundation in exploring how orogenesis controls landform,climate,resources,energy and environment etc.In the light of geodynamic mechanism,three main types of basin- range system may be classified,namely,stretch,compression and strike- slip.In combination with their geotectonic settings and plate movement phases, a comprehensive classification scheme may be educed for structural styles of basin- range system.Natural disasters and geo- ecological environment in the Yangtze Valley have been restricted and impressed by crustal movement and Qinling- Dabie etc.orogenesis since the Mesozoic and Cenozoic.In terms of collocating relation and contacting basin prototype and orogenic belt around the basin for cause of formation, typical structural styles of basin- range system on the central orogenic chain within the Yangtze Valley consist of coupling Tongbo- Dabie orogenic belt and Jianghan- Dongtin fault basin on the northern margin of the central Yangtze landmass, and coupling Qinling- Daba mountain margin thrust- faulted orogenic belt and Sichuan foreland basin on the northern margin of upper- Yangtze landmass.The paper analyzes evolutionary features of two typical structural styles of basin- range system during syn- orogenic, late- orogenic and post- orogenic stages,and probes into their dynamic mechanism.It is emphasized that,in different stages of basin- range system of different properties and basin- mountain transformation process,different structural styles may be formed;and different associations of structural styles can form different types of natural disasters complex and eco- environment systems.展开更多
The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- c...The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- chlorite pyhllite, magnetite-bearing chlorite phyllite or schist, magnetite quartzite, and schist (Yu et al., 1989; Zeng et al., 2011).展开更多
基金funded by the National Natural Science Foundation of China(No.42076069).
文摘The Makran accretionary wedge has the smallest subduction angle among any accretionary prism in the world. The factors controlling the spacing and morphological development of its deep thrust faults, as well as the formation mechanism of shallow normal faults, remain unclear. Meanwhile, the factors affecting the continuity of plane faults must be comprehensively discussed. Clarifying the development characteristics and deformation mechanisms of the Makran accretionary wedge is crucial to effectively guide the exploration of gas hydrate deposits in the area. This study aims to interpret seismic data to identify typical structures in the Makran accretionary wedge, including deep imbricate thrust faults, shallow and small normal faults, wedge-shaped piggyback basins, mud diapirs with fuzzy and disorderly characteristics of reflection, décollements with a northward tilt of 1° – 2°, and large seamounts. Physical simulation-based experiments are performed to comprehensively analyze the results of the plane, section, and slices of the wedge. Results reveal that the distances between and shapes of thrust faults in the deep parts of the Makran accretionary wedge are controlled by the bottom décollement. The uplift of the thrust fault-related folds and the upwelling of the mud diapirs primarily contribute to the formation of small normal faults in the shallow part of the area. The mud diapirs originate from plastic material at the bottom, while those that have developed in the area near the trench are larger. Seamounts and mud diapirs break the continuity of fault plane distribution.
基金granted by Petro China Major Science and Technology Project(Grant No.ZD2019-18301-003)Natural Science Foundation of Shandong Province(Grant No.ZR2023MD069)+1 种基金Training Program of Innovation for Undergraduates in Shandong Institute of Petroleum and Chemical Technology(Grant No.2022084)Science Development Foundation of Dongying(Grant No.DJ2020007)。
文摘The deep Lower Jurassic Ahe Formation(J_(1a))in the Dibei–Tuzi area of the Kuqa Depression has not been extensively explored because of the complex distribution of fractures.A study was conducted to investigate the relationship between the natural fracture distribution and structural style.The J_(1a)fractures in this area were mainly high-angle shear fractures.A backward thrust structure(BTS)is favorable for gas migration and accumulation,probably because natural fractures are more developed in the middle and upper parts of a thick competent layer.The opposing thrust structure(OTS)was strongly compressed,and the natural fractures in the middle and lower parts of the thick competent layer around the fault were more intense.The vertical fracture distribution in the thick competent layers of an imbricate-thrust structure(ITS)differs from that of BTS and OTS.The intensity of the fractures in the ITS anticline is similar to that in the BTS.Fracture density in monoclinic strata in a ITS is controlled by faulting.Overall,the structural style controls the configuration of faults and anticlines,and the stress on the competent layers,which significantly affects deep gas reservoir fractures.The enrichment of deep tight sandstone gas is likely controlled by two closely spaced faults and a fault-related anticline.
基金supported by the undertaken units of subprojects of the Program of Survey on Sandstone-Type Uranium Deposits in Northern Chinathe Ministry of Science and Technology of China(Grant 2015CB453000)the Geological Survey project of China(Grant No.DD20160128)
文摘In Northern China, sandstone-type uranium (U) deposits are mostly developed in Mesozoic-Cenozoic basins. These U deposits are usually hosted in unvarying horizons within the basins and exhibit typical U-forming sedimentary associations, which is referred to as U-bearing rock series. This study describes the structural features of U-bearing rock series within the main Mesozoic-Cenozoic U-producing continental basins in Kazakhstan, Uzbekistan, and Russia in the western segment of the Central Asian Metallogenic Belt (CAMB), and Northern China in the eastern segment of the CAMB. We analyze the basic structural conditions and sedimentary environments of U-bearing rock series in Northern China and classify their structural styles in typical basins into river valley, basin margin, and intrabasin uplift margin types. The intrabasin uplift margin structural style proposed in this study can be used to indicate directions for the exploration of sandstone-type U deposits hosted in the center of a basin. At the same time, the study of structural style provides a new idea for exploring sandstone-type U deposits in Mesozoic-Cenozoic basins and it is of great significance to prospecting of sandstone-type uranium deposits.
基金the National Natural Science Foundation of China(Grant No.40672143,40472107 and 40172076)the National Major Fundamental Research and Development Project(Grant No.2005CB422107 and G1999043305)+1 种基金Development Foundation of Key Laboratory for Hydrocarbon Accumulation of the Education Ministry(Grant No.2003-01)Project of Southern Exploration and Development Division Company,SINOPEC(2003-04).
文摘The Triassic Jialingjiang Formation and Leikoupo Formation are characterized by thick salt layers. Three tectono-stratigraphic sequences can be identified according to detachment layers of Lower-Middle Triassic salt beds in the northern Sichuan Basin, i.e. the sub-salt sequence composed of Sinian to the Lower Triassic Feixianguan Formation, the salt sequence of the Lower Triassic Jialingjiang Formation and Mid-Triassic Leikoupou Formation, and the supra-salt sequence composed of continental clastics of the Upper-Triassic Xujiahe Formation, Jurassic and Cretaceous. A series of specific structural styles, such as intensively deformed belt of basement-involved imbricated thrust belt, basement-involved and salt-detached superimposed deformed belt, buried salt-related detached belt, duplex, piling triangle zone and pop-up, developed in the northern Sichuan Basin. The relatively thin salt beds, associated with the structural deformation of the northern Sichuan Basin, might act as a large decollement layer. The deformation mechanisms in the northern Sichuan Basin included regional compression and shortening, plastic flow and detachment, tectonic upwelling and erosion, gravitational sliding and spreading. The source rocks in the northern Sichuan Basin are strata underlying the salt layer, such as the Cambrian, Silurian and Permian. The structural deformation related to the Triassic salt controlled the styles of traps for hydrocarbon. The formation and development of hydrocarbon traps in the northern Sichuan Basin might have a bearing upon the Lower-Middle Triassic salt sequences which were favorable to the hydrocarbon accumulation and preservation. The salt layers in the Lower-Middle Triassic formed the main cap rocks and are favorable for the accumulation and preservation of hydrocarbon.
文摘The Longmenshan thrust system consists of two major groups of structural styles according to the depth of their involvement: basement thrusts-compressional fault blocks; fold-thrust system in the cover. In cross-section, the Longmenshan structural belt is divided into 5 zones. The propagation of the Longmenshan thrust system is piggy-back due to pushing at the early stage and overstep due to gravity sliding at the late stage. Balanced cross-sections and palinspastic reconstruction reveal that the total sliding displacement of the thrust system amounts to 120 km. The tectonic evolution of the Tethys domain in western Sichuan has experienced 5 stages: continental break-up; ocean-continent subduction ; continent-arc collision; orogenic thrusting; uplift of western Sichuan.
基金This study was financially supported by the Geological Survey Project of China Geological Survey National Potential Evaluation of Coal Resources project(121211121043)the National Natural Science Foundation of China(41572141,41772156).
文摘The occurrence of coal-bearing strata in a variety of coal-bearing basins of China is characterized by late tectonic deformation and remarkable spatial and geochronologic differences.The main controlling factors,which determine the tectonic framework of coalfields,include the geodynamic environment,tectonic evolution,deep structures,tectonic stress,and lithologic combination of the coal measures.The Chinese continent has experienced multi-stage tectonic movements since the Late Paleozoic.The spatial and temporal heterogeneity of its continental tectonic evolution,the complexity of its basement properties,and its stratigraphic configurations control the tectonic framework of its coalfields’present complex and orderly patterns.The concept of coal occurrence structural units is proposed in this paper and is defined as the structural zoning of coal occurrence.China’s coalfields are divided into five coal occurrence structural areas,and the structural characteristics of the coalfields in five main coal occurrence areas throughout the country are summarized.Based on the analysis of the relationship between the structure characteristics and occurrence of coal in these coalfields,the coal-controlling structures are divided into six groups:extensional structural styles,compressional structural styles,shearing and rotational structural styles,inverted structural styles,sliding structural styles,and syn-depositional structural styles.In addition,the distribution of coal-controlling structural styles is briefly summarized in this paper.
基金financially supported by the National Key Projects of China(2011ZX05003)the 12th Five-year Program of Petrochina(2011B-04)the State Key Laboratory of EOR
文摘The Kuqa and the Southern Junggar foreland thrust belts, which lie to the southern and northern Tianshan, respectively, were formed under a strong compressional tectonic setting. Due to the differential propagation and deformation under the control of the décollement horizon, the structural deformation styles differ in the Kuqa and Southern Junggar thrust belts. Imbricated stacking is developed in the Kuqa thrust belt, forming a piggyback imbricated pattern of faulted anticline and fault-block structural assemblage dominated by salt structures. In contrast, wedge-shaped thrusts are developed in Southern Junggar, mainly forming vertical laminated patterns of multi-wedge-structure stacks strongly influenced by the décollement horizons. The different deformation patterns and structural styles of the north and south of Tian Shan control the contrasting characteristics of hydrocarbon accumulation in the foreland thrust belts of the Kuqa and the Southern Junggar thrust belts, including the variance in the hydrocarbon trap types, pathway systems and hydrocarbon-bearing horizons. Proven by the hydrocarbon accumulation research and exploration achievements, recent exploration targets should focus on sub-salt piggyback imbricated structural patterns in the Kuqa and the deep laminated patterns in the Southern Junggar thrust belt.
文摘The Khalfani anticline is located in the Coastal Fars (Zagros, adjacent Persian Gulf). This anticline with Northwest-Southeast trend is a fault bend fold. In the study area, the Khalfani anticline has increased elevation from West to East with three distinct humps. The major faults in the study area are the Hendurabi and the Razak sinistral strike slip faults. Because analysis of fold and their folding styles in different parts system is important, the analysis of folding style elements is necessary for structural studies. The main aim of this research is structural style analysis based on fold style elements in the Khalfani anticline. This analysis is important for progress in hydrocarbons exploration in the Coastal Fars area. In this research, we used Tectonics FP and Global Mapper Software for preparing some data in our study. In addition, we used the common classification of folds for our research. Based on given results, the folding pattern of this anticline has indicated that the fold style is same in different parts of the Khalfani anticline. In the study area, based on classifications of fold in different methods, fold style is same together. Fold, with close sideways requires special attention as structural view;then the Khalfani Anticline with close style in all parts has special deformation and folding style. It seems that in the study area, folding style and variation of structural style have been created by effect of the Razak and the Hendurabi sinistral strike slip fault. Because these faults are basement or deep-seated faults, special folding style and special deformation can be formed in the study area. In addition, the Khalfani anticline in the study area has restricted within the Razak and the Hendurabi sinistral strike slip faults.
文摘Qaidam basin is located at northeast Qinghai—Xizang (Tibet) plateau, and surrounded by east Kunlun, south Qilian and Altun mountain systems. The purpose of this paper is to study the Cenozoic basin evolutionary stages, structural styles of the Qaidam, and the denudation in adjacent mountain systems through seismic profile interpretation and complemented by field observation. The Qaidam basin has experienced two tectonic stages of Paleogene—early Miocene (65~12Ma) and late Miocene—present (12~0Ma). The former is characterized by differential uplift of the mountains and subsidence of the basin, and the latter by intense compression, wrench, thrusting and folding. The compressional structural styles are mainly distributed in the Circle Hero—Range Depression of southwest Qaidam, such as Nanyishan, Youquanzi, Younan, Youshashan anticline belts and thrust faults. The wrench structural styles of the northern Qaidam include en echelon uplifts (fault—block outcrops) such as Seshitengshan, Luliangshan, Xitieshan and Eimnikshan, which are mainly composed of pre\|Sinian and Paleozoic rocks; en echelon anticlines such as Lenghu—Nanbaxian belts; and en echelon depressions such as Kunteyi, Senan and Yibei depressions, which are mainly composed of Mesozoic and Cenozoic rocks.
基金the National Natural Science Foundation of China(NSFC)program(41472084)the China Earthquake Administration,Institute of Seismology Foundation(IS201526246)for providing funding and for allowing publication of this paper
文摘The Fushan Depression is a half-graben rifted sub-basin located in the southeast of the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the sub-basin. Using three-dimensional(3-D)seismic data and logging data over the sub-basin, we analyzed structural styles and sedimentary characteristics of the Liushagang sequence. Five types of structural styles were defined: ancient horst, traditional slope, flexure slope-break, faulted slope-break and multiple-stage faults slope, and interpretations for positions, background and development formations of each structural style were discussed. Structural framework across the sub-basin reveals that the most remarkable tectonic setting is represented by the central transfer zone(CTZ) which divides the sub-basin into two independent depressions, and two kinds of sequence architectures are summarized:(i) the western multi-stage faults slope;(ii) the eastern flexure slope break belt. Combined with regional stress field of the Fushan Depression, we got plane combinations of the faults, and finally built up plan distribution maps of structural system for main sequence. Also, we discussed the controlling factors mainly focused on subsidence history and background tectonic activities such as volcanic activity and earthquakes. The analysis of structural styles and tectonic evolution provides strong theoretical support for future prospecting in the Fushan subbasin and other similar rifted basins of the Beibuwan Basin in South China Sea.
文摘A structural cross-section constructed across the Zagros Fold-Thrust Belt covering the Abadan Plain, Dezful Embayment, and Izeh Zone applied 2D and 3D seismic data, well data, surface and subsurface geological maps, satellite images and field reconnaissance. Besides validation and modification of the cross-section, restoration allows better understanding of the geology, structural style and stratigraphy of the Zagros basin. In the area of interest, the Hormuz basal decollement and the Gachsaran detachment play the most significant roles in the structural style and deformation of the Zagros belt. More complexity is associated with interval decollements such as Triassic evaporites, Albian shales and Eocene marls. A variety of lithotectonic units and detachment surfaces confound any estimation of shortening, which generally decreases with increasing depth. Deformation completely differs in the Abadan Plain, Dezful Embayment and Izeh Zone because of different sedimentation histories and tectonic evolution; gentle and young structures can be interpreted as pre-collisional structures of the Dezful Embayment before the Late Cretaceous. After the Late Cretaceous, the Mountain Front Fault is the main control of sedimentation and deformation in the Zagros Basin, and this completely characterizes fold style and geometry within the Dezful Embayment and the Izeh Zone.
文摘The front of a thrust-detachment fault may have various styles such as decoupling, fold, forethrust and backthrust ones because of differences in magnitude, direction and time of the forces exerted on the fault and the inhomogeneity of rock mechanical properties. They have different characteristics and are usually associated with gravity structure, inverse structure and diapir structure. These structures exist together in the same thrust-detachment fault and can influence, compensate for and convert into each other. They provide important grounds not only for the study of the dynamic state, propagation mode, evolutionary process and formation mechanism but also for the analysis of the petroleum generation, migration, accumulation and preservation and arrangement of drill holes in foreland basins.
基金This paper is one of achievements of the Chinese Academy of Sciences " Knowledge Innovation Project" item(KZCX2- 113).
文摘Basin and orogenic belt belong to the same tectonic system which has close connections in spatial distribution and dynamic mechanism.Structural styles analysis of basin- range system, not only may rebuild basin- range coupling process and landscape evolution of orogenic belt and its adjacent basin, but also become the foundation in exploring how orogenesis controls landform,climate,resources,energy and environment etc.In the light of geodynamic mechanism,three main types of basin- range system may be classified,namely,stretch,compression and strike- slip.In combination with their geotectonic settings and plate movement phases, a comprehensive classification scheme may be educed for structural styles of basin- range system.Natural disasters and geo- ecological environment in the Yangtze Valley have been restricted and impressed by crustal movement and Qinling- Dabie etc.orogenesis since the Mesozoic and Cenozoic.In terms of collocating relation and contacting basin prototype and orogenic belt around the basin for cause of formation, typical structural styles of basin- range system on the central orogenic chain within the Yangtze Valley consist of coupling Tongbo- Dabie orogenic belt and Jianghan- Dongtin fault basin on the northern margin of the central Yangtze landmass, and coupling Qinling- Daba mountain margin thrust- faulted orogenic belt and Sichuan foreland basin on the northern margin of upper- Yangtze landmass.The paper analyzes evolutionary features of two typical structural styles of basin- range system during syn- orogenic, late- orogenic and post- orogenic stages,and probes into their dynamic mechanism.It is emphasized that,in different stages of basin- range system of different properties and basin- mountain transformation process,different structural styles may be formed;and different associations of structural styles can form different types of natural disasters complex and eco- environment systems.
基金the China State Mineral Resources Investigation Program (Grant No.1212011220936)National Science Foundation of China (Grant No.U1403292 41472196)
文摘The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- chlorite pyhllite, magnetite-bearing chlorite phyllite or schist, magnetite quartzite, and schist (Yu et al., 1989; Zeng et al., 2011).