期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modelling of a Multi-Temperature Plasma Composition
1
作者 B. Liani R. Benallal Z. Bentalha 《Chinese Physics Letters》 SCIE CAS CSCD 2005年第12期3119-3122,共4页
Knowledge of plasma composition is very important for various plasma applications and prediction of plasma properties. We use the Saha equation and Debye length equation to calculate the non-local thermodynamic-equili... Knowledge of plasma composition is very important for various plasma applications and prediction of plasma properties. We use the Saha equation and Debye length equation to calculate the non-local thermodynamic-equilibrium plasma composition. It has been shown that the model to 2T with T representing the temperature (electron temperature and heavy-particle temperature) described by Chen and Han [J. Phys. D 32 (1999)1711] can be applied for a mixture of gases, where each atomic species has its own temperature, but the model to 4T is more general because it can be applicable to temperatures distant enough of the heavy particles. This can occur in a plasma composed of big- or macro-molecules. The electron temperature Te varies in the range 8000*20000K at atmospheric pressure. 展开更多
关键词 2-temperature PLASMA SCATTERING
下载PDF
High-pressure synthesis and properties of CeO_2-ZrO_2 solid solution
2
作者 XU Dapeng, WANG Quanyong, LU Zhe, LIU Zhiguo, ZHANG Gongmu & SU Wenhui1. Department of Physics, Jilin University, Changchun 130023 China 2. International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, China 3. Center for Condensed Matter and Radiation Physics, China Center of Advanced Science and Technology (World Laboratory), Beijing 100080, China 《Chinese Science Bulletin》 SCIE EI CAS 2001年第10期801-806,共6页
Using nanoparticles of CeO2 and ZrO2 prepared by the chemical precipitation method as starting materials, the single-phase cubic Ce0.5Zr0.5O2 solid solution (c-Ce0.5Z0.5O2) has been synthesized under 3.1 GPa at 1073 K... Using nanoparticles of CeO2 and ZrO2 prepared by the chemical precipitation method as starting materials, the single-phase cubic Ce0.5Zr0.5O2 solid solution (c-Ce0.5Z0.5O2) has been synthesized under 3.1 GPa at 1073 K for the first time. The structure of the c-Ce0.5Zr0.5O2 has not been changed before and after annealing at 773 K for 1 h. Only an unknown EPR signal (g =1.990) has been observed in the c-Ce0.5Zr0.5O2 and not varied after annealing at 773 K for 1 h, which exhibited that there exists no Ce3+ in the c-Ce0.5Zr0.5O2 and the Ce4+ has not been reduced into Ce3+ after annealing. The transport mechanism is ionic for the c-Ce0.5Zr0.5O2. The bulk conductivity (a =1.2×10-5 S/cm at 823 K, σ=2.1 ×10-3 S/cm at 1123 K) is the same as that of CeO2, but smaller than that of Y2O3-stabilized ZrO2. A marked curvature at T = 823 K has been observed in the Arrhenius plot of the bulk conductivity. The activation energy below 823 K is lower than that above 823 K, and the reason has been discussed. 展开更多
关键词 CEO2-ZRO2 NANOCRYSTALLINE high-pressure and -temperature SOLID-STATE REACTION SOLID solution.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部