The construction of the double-lane five-step ship lock of the Three Gorges Project (TGP) wascommenced in 1994, the excavation of the ship lock was completed by the end of 1999, and the ship lockwas put in operation...The construction of the double-lane five-step ship lock of the Three Gorges Project (TGP) wascommenced in 1994, the excavation of the ship lock was completed by the end of 1999, and the ship lockwas put in operation in June 2003. The side slopes of the ship lock are characterized by great height(170 m), steepness (70 m in height of upright slope), and great length (over 7000 m in total length). Inassociation with the ship lock, the surrounding rocks in slope have a high potential to deform, withwhich the magnitude of deformation is restricted. Monitoring results show that the deformation of thefive-step ship lock high slopes of the TGP primarily occurred in excavation period, and deformationtended to be stable and convergent during operation period, suggesting the allowable ranges of deformation.At present, the slopes and lock chambers are stable, and the ship lock works well under normaloperation condition, enabling the social and economic benefits of the TGP. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The Three Gorges Project is one of the essential key projects for flood controlling and water resources regulation in the Yangtze River. The project includes a river-crossing dam, underground powerhouses, and navigati...The Three Gorges Project is one of the essential key projects for flood controlling and water resources regulation in the Yangtze River. The project includes a river-crossing dam, underground powerhouses, and navigation structures. Because of the huge size and complicated construction technologies, the project faced a series of challenging engineering issues. In terms of rock mechanics, there are many key technical issues, including the sliding resistance and stability of the dam section along the foundations of powerhouses No.l-5, the ,,;lope stability of the double-line five-stage shiplock, excavation of large-scale underground powerhouses, and curtain grouting under the dam. With decades of scientific research and 16 years of practical construction experiences and reservoir operations, these key technical issues in construction of the Three Gorges Project are successfully resolved, which will attribute to the development of hydropower technology. On the basis of the monitoring data during construction and normal operation periods of the Three Gorges Project, this paper presents a systematic analysis of these key rock mechanical issues in terms of behaviors, solutions, dynamic controlling, monitoring arrangement and integrated assessment.展开更多
文摘The construction of the double-lane five-step ship lock of the Three Gorges Project (TGP) wascommenced in 1994, the excavation of the ship lock was completed by the end of 1999, and the ship lockwas put in operation in June 2003. The side slopes of the ship lock are characterized by great height(170 m), steepness (70 m in height of upright slope), and great length (over 7000 m in total length). Inassociation with the ship lock, the surrounding rocks in slope have a high potential to deform, withwhich the magnitude of deformation is restricted. Monitoring results show that the deformation of thefive-step ship lock high slopes of the TGP primarily occurred in excavation period, and deformationtended to be stable and convergent during operation period, suggesting the allowable ranges of deformation.At present, the slopes and lock chambers are stable, and the ship lock works well under normaloperation condition, enabling the social and economic benefits of the TGP. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘The Three Gorges Project is one of the essential key projects for flood controlling and water resources regulation in the Yangtze River. The project includes a river-crossing dam, underground powerhouses, and navigation structures. Because of the huge size and complicated construction technologies, the project faced a series of challenging engineering issues. In terms of rock mechanics, there are many key technical issues, including the sliding resistance and stability of the dam section along the foundations of powerhouses No.l-5, the ,,;lope stability of the double-line five-stage shiplock, excavation of large-scale underground powerhouses, and curtain grouting under the dam. With decades of scientific research and 16 years of practical construction experiences and reservoir operations, these key technical issues in construction of the Three Gorges Project are successfully resolved, which will attribute to the development of hydropower technology. On the basis of the monitoring data during construction and normal operation periods of the Three Gorges Project, this paper presents a systematic analysis of these key rock mechanical issues in terms of behaviors, solutions, dynamic controlling, monitoring arrangement and integrated assessment.