期刊文献+
共找到928篇文章
< 1 2 47 >
每页显示 20 50 100
Persistence of fertilization effects on soil organic carbon in degraded alpine wetlands in the Yellow River source region
1
作者 DUAN Peng WEI Rongyi +7 位作者 WANG Fangping LI Yongxiao SONG Ci HU Bixia YANG Ping ZHOU Huakun YAO Buqing ZHAO Zhizhong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1358-1371,共14页
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta... In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content. 展开更多
关键词 Degraded alpine wetlands FERTILIZER soil organic carbon Temporal variation Vegetation aboveground biomass Yellow river source region
下载PDF
Interdecadal variability of summer precipitation in the Three River Source Region: Influences of SST and zonal shifts of the East Asian subtropical westerly jet
2
作者 Yumeng Liu Xianhong Meng +5 位作者 Lin Zhao S-Y.Simon Wang Lixia Zhang Zhaoguo Li Chan Wang Yingying An 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期47-53,共7页
Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the i... Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ. 展开更多
关键词 summer precipitation East Asian subtropical westerly jet Three river source region Atlantic-Eurasian teleconnection
下载PDF
Dataset of Comparative Observations for Land Surface Processes over the Semi-Arid Alpine Grassland against Alpine Lakes in the Source Region of the Yellow River 被引量:2
3
作者 Xianhong MENG Shihua LYU +13 位作者 Zhaoguo LI Yinhuan AO Lijuan WEN Lunyu SHANG Shaoying WANG Mingshan DENG Shaobo ZHANG Lin ZHAO Hao CHEN Di MA Suosuo LI Lele SHU Yingying AN Hanlin NIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第6期1142-1157,共16页
Thousands of lakes on the Tibetan Plateau(TP) play a critical role in the regional water cycle, weather, and climate. In recent years, the areas of TP lakes underwent drastic changes and have become a research hotspot... Thousands of lakes on the Tibetan Plateau(TP) play a critical role in the regional water cycle, weather, and climate. In recent years, the areas of TP lakes underwent drastic changes and have become a research hotspot. However, the characteristics of the lake-atmosphere interaction over the high-altitude lakes are still unclear, which inhibits model development and the accurate simulation of lake climate effects. The source region of the Yellow River(SRYR) has the largest outflow lake and freshwater lake on the TP and is one of the most densely distributed lakes on the TP. Since 2011,three observation sites have been set up in the Ngoring Lake basin in the SRYR to monitor the lake-atmosphere interaction and the differences among water-heat exchanges over the land and lake surfaces. This study presents an eight-year(2012–19), half-hourly, observation-based dataset related to lake–atmosphere interactions composed of three sites. The three sites represent the lake surface, the lakeside, and the land. The observations contain the basic meteorological elements,surface radiation, eddy covariance system, soil temperature, and moisture(for land). Information related to the sites and instruments, the continuity and completeness of data, and the differences among the observational results at different sites are described in this study. These data have been used in the previous study to reveal a few energy and water exchange characteristics of TP lakes and to validate and improve the lake and land surface model. The dataset is available at National Cryosphere Desert Data Center and Science Data Bank. 展开更多
关键词 field observation dataset lake-atmosphere interaction energy and water exchanges the source region of the Yellow river Tibetan Plateau
下载PDF
Impacts of Climatic Factors on Runoff Coefficients in Source Regions of the Huanghe River 被引量:12
4
作者 CHEN Liqun LIU Changming +1 位作者 LI Yanping WANG Guoqiang 《Chinese Geographical Science》 SCIE CSCD 2007年第1期47-55,共9页
Runoff coefficients of the source regions of the Huanghe River in 1956-2000 were analyzed in this paper. In the 1990s runoff of Tangnaihai Hydrologic Station of the Huanghe River experienced a serious decrease, which ... Runoff coefficients of the source regions of the Huanghe River in 1956-2000 were analyzed in this paper. In the 1990s runoff of Tangnaihai Hydrologic Station of the Huanghe River experienced a serious decrease, which had attracted considerable attention. Climate changes have important impact on the water resources availability. From the view of water cycling, runoff coefficients are important indexes of water resources in a particular catchment. Kalinin baseflow separation technique was improved based on the characteristics of precipitation and streamflow. After the separation of runoff coefficient (R/P), baseflow coefficient (Br/P) and direct runoff coefficient (Dr/P) were estimated. Statistic analyses were applied to assessing the impact of precipitation and temperature on runoff coefficients (including Dr/P, Br/P and R/P). The results show that in the source regions of the Huanghe River, mean annual baseflow coefficient was higher than mean annual direct runoff coefficient. Annual runoff coefficients were in direct proportion to annual precipitation and in inverse proportion to annual mean temperature. The decrease of runoff coefficients in the 1990s was closely related to the decrease in precipitation and increase in temperature in the same period. Over different sub-basins of the source regions of the Huanghe River, runoff coefficients responded differently to precipitation and temperature. In the area above Jimai Hydrologic Station where annual mean temperature is -3.9℃, temperature is the main factor influencing the runoff coefficients. Runoff coefficients were in inverse relation to temperature, and precipitation had nearly no impact on runoff coefficients. In subbasin between Jimai and Maqu Hydrologic Station Dr/P was mainly affected by precipitation while R/P and Br/P were both significantly influenced by precipitation and temperature. In the area between Maqu and Tangnaihai hydrologic stations all the three runoff coefficients increased with the rising of annual precipitation, while direct runoff coefficient was inversely proportional to temperature. In the source regions of the Huanghe River with the increase of average annual temperature, the impacts of temperature on runoff coefficients become insignificant. 展开更多
关键词 source regions of the Huanghe river runoff coefficient PRECIPITATION TEMPERATURE
下载PDF
Eco-environment range in the source regions of the Yangtze and Yellow rivers 被引量:18
5
作者 DING Yongjian,YANG Jianping,LIU Shiyin,CHEN Rensheng,WANG Genxu,SHEN Yongping,WANG Jian,XIE Changwei,ZHANG Shiqing(Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China) 《Journal of Geographical Sciences》 SCIE CSCD 2003年第2期172-180,共9页
Based on geographical and hydrological extents delimited, four principles are identified, as the bases for delineating the ranges of the source regions of the Yangtze and Yellow rivers in the paper.... Based on geographical and hydrological extents delimited, four principles are identified, as the bases for delineating the ranges of the source regions of the Yangtze and Yellow rivers in the paper. According to the comprehensive analysis of topographical characteristics, climate conditions, vegetation distribution and hydrological features, the source region ranges for eco-environmental study are defined. The eastern boundary point is Dari hydrological station in the upper reach of the Yellow River. The watershed above Dari hydrological station is the source region of the Yellow River which drains an area of 4.49×10 4 km 2 . Natural environment is characterized by the major topographical types of plateau lakes and marshland, gentle landforms, alpine cold semi-arid climate, and steppe and meadow vegetation in the source region of the Yellow River. The eastern boundary point is the convergent site of the Nieqiaqu and the Tongtian River in the upstream of the Yangtze River. The watershed above the convergent site is the source region of the Yangtze River, with a watershed area of 12.24×10 4 km 2 . Hills and alpine plain topography, gentle terrain, alpine cold arid and semi-arid climate, and alpine cold grassland and meadow are natural conditions in the source region of the Yangtze River. 展开更多
关键词 the source regions of the Yangtze and Yellow rivers eco-environmental range CLC number:X171.1
下载PDF
Impact of land-cover and climate changes on runoff of the source regions of the Yellow River 被引量:6
6
作者 李道峰 田英 +1 位作者 刘昌明 HAO Fanghua 《Journal of Geographical Sciences》 SCIE CSCD 2004年第3期330-338,共9页
After dividing the source regions of the Yellow River into 38 sub-basins, thepaper made use of the SWAT model to simulate streamflow with validation and calibration of theobserved yearly and monthly runoff data from t... After dividing the source regions of the Yellow River into 38 sub-basins, thepaper made use of the SWAT model to simulate streamflow with validation and calibration of theobserved yearly and monthly runoff data from the Tangnag hydrological station, and simulationresults are satisfactory. Five land-cover scenario models and 24 sets of temperature andprecipitation combinations were established to simulate annual runoff and runoff depth underdifferent scenarios. The simulation shows that with the increasing of vegetation coverage annualrunoff increases and evapotranspiration decreases in the basin. When temperature decreases by 2℃and precipitation increases by 20%, catchment runoff will increase by 39.69%, which is the largestsituation among all scenarios. 展开更多
关键词 distributed hydrological model source regions of the Yellow river scenariosimulation changing environment
下载PDF
The Impacts of Permafrost Change on NPP and Implications:A Case of the Source Regions of Yangtze and Yellow Rivers 被引量:9
7
作者 FANG Yiping QIN Dahe +2 位作者 DING Yongjian YANG Jianping XU Keyan 《Journal of Mountain Science》 SCIE CSCD 2011年第3期437-447,共11页
This paper studies the relationship between net primary productivity (NPP) and annual average air temperature (GT) at 0cm above ground in permafrost regions by using revised Chikugo NPP model,cubic spline interpolatin... This paper studies the relationship between net primary productivity (NPP) and annual average air temperature (GT) at 0cm above ground in permafrost regions by using revised Chikugo NPP model,cubic spline interpolating functions,and non-linear regression methods.The source regions of the Yangtze and Yellow Rivers were selected as the research areas.Results illustrate that:(1) There is significant non-linear relationship between NPP and GT in various typical years;(2) The maximum value of NPP is 6.17,5.87,7.73,and 5.41 DM·t·hm-2 ·a-1 respectively,and the corresponding GT is 7.1,10.0,21.2,and 8.9 o C respectively in 1980,1990,2000 and 2007;(3) In 1980,the sensitivity of NPP to GT is higher than in 1990,2000 and 2007.This tendency shows that the NPP presents change from fluctuation to an adaptation process over time;(4) During 1980~2007,the accumulated NPP was reduced to 8.05,and the corresponding carrying capacity of theoretical livestock reduced by 11%;(5) The shape of the demonstration region of ecological compensation system,livelihood support system,and science appraisal system in the source regions of Yangtze and Yellow Rivers are an important research for increasing the adaptation capacity and balancing protection and development. 展开更多
关键词 The source regions of Yangtze and Yellow rivers PERMAFROsT Ground temperature (GT) Net primary productivity (NPP) Policy adaptation
下载PDF
Evaluation of Ecological Sustainable Development in the Yangtze River Delta Region Based on Ecological Footprint Theory
8
作者 DING Yumin 《Journal of Landscape Research》 2024年第3期51-58,共8页
The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource produ... The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly. 展开更多
关键词 Ecological footprint Resource productivity China’s equilibrium factor Yangtze river Delta region
下载PDF
Adaptation Management of Mountain Tourism Service: The Case of the Source Regions of the Yangtze and Yellow River 被引量:6
9
作者 FANG Yiping QIN Dahe +1 位作者 DING Yongjian YANG Jianping 《Journal of Mountain Science》 SCIE CSCD 2009年第3期299-310,共12页
Mountain areas are often rich in ecological diversity and recreational opportunities. Mountain tourism is thought to be an effective and important means for maintaining and expanding rural economies and, thus, improvi... Mountain areas are often rich in ecological diversity and recreational opportunities. Mountain tourism is thought to be an effective and important means for maintaining and expanding rural economies and, thus, improving the living conditions of rural societies. As mountain tourism service research is a professional field with several disciplines involved, a multi-disciplinary management pIatform is needed and it facilitates participation in sustainable mountain development by diverse stakeholders. With the source regions of the Yangtze and the Yellow River as a case study, this paper presents a conceptual framework for an adaptation management of mountain tourism services according to technical, policy, social and economic dimensions. The framework is based on a vulnerability assessment of mountain ecosystems, and can serve as a reference for the development of tourism service in other mountain areas. 展开更多
关键词 adaptation management mountain tourism service (MTs source regions of Yangtze and Yellow rivers China
下载PDF
Role of permafrost in resilience of social-ecological system and its spatio-temporal dynamics in the source regions of Yangtze and Yellow Rivers 被引量:2
10
作者 FANG Yi-ping ZHU Fu-biao +2 位作者 YI Shu-hua QIU Xiao-ping DING Yong-jian 《Journal of Mountain Science》 SCIE CSCD 2019年第1期179-194,共16页
Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of per... Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of permafrost that restricts the hydrothermal condition of alpine grassland ecosystem. In this paper, based on the structural dynamics, we developed the numerical model for the SER in the permafrost regions of the source of Yangtze and Yellow Rivers, analyzed the spatial-temporal characteristics and sensitivity of the SER, and estimated the effect of permafrost change on the SER. The results indicate that: 1) the SER has an increasing trend, especially after 1997, which is the joint effect of precipitation, temperature, NPP and ecological conservation projects; 2) the SER shows the spatial feature of high in southeast and low in northwest,which is consistent with the variation trends of high southeast and low northwest for the precipitation, temperature and NPP, and low southeast and high northwest for the altitude; 3) the high sensitive regions of SER to the permafrost change have gradually transited from the island distribution to zonal and planar distribution since 1980, moreover, the sensitive degree has gradually reduced; relatively, the sensitivity has high value in the north and south, and low value in the south and east; 4) the thickness of permafrost active layer shows a highly negative correlation with the SER. The contribution rate of permafrost change to the SER is-4.3%, that is, once the thickness of permafrost active layer increases 1 unit, the SER would decrease 0.04 units. 展开更多
关键词 REsILIENCE of social ECOLOGICAL system PERMAFROsT PERMAFROsT active layer thickness structural dynamic equation source regions of YANGTZE and YELLOW rivers
下载PDF
Changes in stress within grassland ecosystems in the three counties of the source regions of the Yangtze and Yellow Rivers 被引量:2
11
作者 Fang, YiPing Qin, DaHe Ding, YongJian 《Journal of Arid Land》 SCIE 2010年第2期116-122,共7页
Based on a database of more than 40 years of second production process and energy flow records for Maduo,Qumalai and Yushu counties,a dynamic model of the stress within grassland ecosys-tems was established using a no... Based on a database of more than 40 years of second production process and energy flow records for Maduo,Qumalai and Yushu counties,a dynamic model of the stress within grassland ecosys-tems was established using a nonlinear regression method for this source regions of the Yangtze and Yel-low Rivers.The results show that dynamic curves of stress within grassland ecosystems in the three coun-ties were in the shape of an inverted 'U' during the period 1965-2007.It also revealed that the variation in actual amount of livestock inventories reflected the general trends of the stress within the grassland eco-systems in the source regions,although there were many other factors for the increase or reduction in grassland ecosystem stress. 展开更多
关键词 the source regions of Yangtze and Yellow rivers the stress within grassland ecosystems inverted 'U' model Driver
下载PDF
SEVERAL PROBLEMS ABOUT THE ECO ENVIRONMENTAL RESEARCH ON THE SOURCE REGIONS OF THE CHANGJIANG RIVER AND THE HUANGHE RIVER
12
作者 王根绪 程国栋 《Chinese Geographical Science》 SCIE CSCD 1999年第3期29-35,共7页
Situated in the hinterland of the Qinghai Xizang Plateau, the eco environment of the source regions of the Changjiang (Yangtze) River and the Huanghe(Yellow) River are getting worse in recent years and has attracted i... Situated in the hinterland of the Qinghai Xizang Plateau, the eco environment of the source regions of the Changjiang (Yangtze) River and the Huanghe(Yellow) River are getting worse in recent years and has attracted increasing attention of researchers around the world. This paper discusses several major problems concerning the eco environment of the source regions. The authors hold that the two eco environment extents of the source region of the Changjiang River should be demarcated with the confluence of the Deng’ailongqu River to Zhidoi as its boundary, or 1.15×10 4 km 2 larger than the hydrological source area; while that of the Huanghe River should be delimited with Medotangumaxia in Darlag County as its limit, or 1.84×10 4 km 2 larger than the hydrological source area. The eco environment of the source regions with vegetation, soil, wetland, lake and river as the main elements, has always been affected by climatic changes, freeze thaw processes (including frozen soil freeze thaw processes and glacial snow cover freeze thaw processes), rodent damage and human activities. From an evaluation angle of fragile ecosystem, a study index system is established and several important issues for future research are suggested. 展开更多
关键词 CHANGJIANG river source region Huanghe river source region ECO environment ENVIRONMENTAL problems
下载PDF
Studies on eco-environmental change in source regions of the Yangtze and Yellow Rivers of China:present and future
13
作者 JianPing Yang 《Research in Cold and Arid Regions》 CSCD 2019年第3期173-183,共11页
The source regions of the Yangtze and Yellow Rivers are important in the field of eco-environmental change research in China because of its distinct alpine ecosystem and cryosphere environment. At present, there are t... The source regions of the Yangtze and Yellow Rivers are important in the field of eco-environmental change research in China because of its distinct alpine ecosystem and cryosphere environment. At present, there are three different concepts on the extent of source areas of the Yangtze and Yellow Rivers: hydrological, geographical, and eco-environmental. Over the past decades, annual average air temperature has warmed significantly;moreover, the temperature rise rate increases notably with increase of time of the data series. Annual precipitation has no obvious increase or decrease trend, and the climate has become warm and dry in the source regions. As a result, the cryosphere in the regions has shrunk significantly since 1960 s. A warm and dry climate and changing cryosphere together induced a substantial declination of alpine wetlands, marked decrease in river runoff, significant degradation of alpine grassland, and a reduction of engineering stability.The ecological environment, however, has a tendency for restoration in the regions because the climate has become gradually warm and wet since 2000. Thus, studies on eco-environmental change is transforming from a single element to multidisciplinary integration. Climate change-cryopshere change-physical and socioeconomic impacts/risk-adaptation constitute a chain of multidisciplinary integration research. 展开更多
关键词 CRYOsPHERE CHANGE hydrological system alpine grassland the source regions of the YANGTZE and Yellow rivers PREsENT and FUTURE
下载PDF
Characteristics of grassland degradation and driving forces in the source region of the Yellow River from 1985 to 2000 被引量:22
14
作者 LIU Linshan ZHANG Yili +1 位作者 BAI Wanqi YAN Jianzhong 《Journal of Geographical Sciences》 SCIE CSCD 2006年第2期131-142,共12页
The source region of the Yellow River is located in the middle east of the Tibetan Plateau in northwest China. The total area is about 51,700 km^2, mainly covered by grassland (79%), unused land (16%) and water ... The source region of the Yellow River is located in the middle east of the Tibetan Plateau in northwest China. The total area is about 51,700 km^2, mainly covered by grassland (79%), unused land (16%) and water (4%). The increasing land utilization in this area has increased the risk of environmental degradation. The land use/cover data (1985 and 2000) provided by the Data Center of Resources and Environment in the Chinese Academy of Sciences were used to analyze the land cover change in the source region of the Yellow River. DEM (1:250,000) data, roads and settlement data were used to analyze the spatial characteristics of grasslands degradation. The ArcGIS 9 software was used to convert data types and do the overlay, reclassification and zonal statistic analysis. Results show that grassland degradation is the most important land cover change in the study area, which occupied 8.24% of the region's total area. Human activities are the main causes of the grassland degradation in the source region of the Yellow River: 1) the degradation rate is higher on the sunny slope than on the shady slope; 2) the grassland degradation rate decreases with an increase in the elevation, and it has a correlation coefficient of -0.93; 3) the nearer to the settlements the grassland is, the higher the degradation rate. Especially within a distance range of 12 km to the settlements, the grassland degradation rate is highly related with the distance, with a coefficient of -0.99; and 4) in the range of 4 km, the degradation rate decreases with the increase of distance to the roads, with a correlation coefficient of -0.98. Besides some physical factors, human activities have been the most important driving forces of the grassland degradation in the source region of the Yellow River since 1985. To resolve the degradation problems, population control is essential, and therefore, it can reduce the social demand of livestock products from the grassland. To achieve sustainable development, it needs to improve the management of grassland ecosystem. 展开更多
关键词 source region of the Yellow river grassland degradation slope aspect ELEVATION DIsTANCE sETTLEMENT ROADs
下载PDF
Changes in freezing and thawing indices over the source region of the Yellow River from 1980 to 2014 被引量:6
15
作者 Rui Wang Qingke Zhu Hao Ma 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第1期257-268,共12页
Freezing and thawing indices are not only of great significance for permafrost research but also are important indicators of the effects of climate change.However,to date,research on ground-surface freezing and thawin... Freezing and thawing indices are not only of great significance for permafrost research but also are important indicators of the effects of climate change.However,to date,research on ground-surface freezing and thawing indices and their relationship with air indices is limited.Based on daily air and ground-surface temperatures collected from 11 meteorological stations in the source region of the Yellow River,the freezing and thawing indices were calculated,and their spatial distribution and trends were analyzed.The air-freezing index(AFI),air-thawing index(ATI),ground surface-freezing index(GFI),ground surface-thawing index(GTI),air thawing-freezing index ratio(Na)and surface ground thawing-freezing index ratio(Ng)were 1554.64,1153.93,1.55,2484.85,850.57℃-days and 3.44,respectively.Altitude affected the spatial distribution of the freezing and thawing indices.As the altitude increased,the freezing indices gradually increased,and the thawing indices and thawing-freezing index ratio decreased.From 1980 to 2014,the AFI and GFI decreased at rates of 8.61 and 11.06℃-days a^(-1),the ATI and GTI increased at 9.65 and 14.53℃-days a^(-1),and Na and Ng significantly increased at 0.21 and 0.79 decade^(-1).Changes in the freezing and thawing indices were associated with increases in the air and ground-surface temperatures.The rates of change of the ground surface freezing and thawing indices were faster than the air ones because the rate of increase of the groundsurface temperature was faster than that of the air and the difference between the ground surface and air increased.The change point of the time series of freezing and thawing indices occurred in 2000–2001.After 2000–2001,the AFI and GFI were lower than before the change point,and the changing trend was lower.The ATI,GTI,Na and Ng during 2001–2014 were higher,with faster rates than before.In addition,the annual thawing indices composed a greater proportion of the mean annual air temperature and mean annual ground surface temperature than the annual freezing indices.This study provides the necessary basis for research on and prediction of permafrost changes,especially changes in the depth of the active permafrost layer,climate change,and possible evolution of the ecological environment over the source region of the Yellow River on the Qinghai-Tibet Plateau. 展开更多
关键词 CLIMATE change FREEZING and thawing indices PERMAFROsT The source region of the YELLOW river
下载PDF
Variations of precipitation characteristics during the period 1960–2014 in the Source Region of the Yellow River,China 被引量:7
16
作者 Mudassar IQBAL WEN Jun +2 位作者 WANG Shaoping TIAN Hui Muhammad ADNAN 《Journal of Arid Land》 SCIE CSCD 2018年第3期388-401,共14页
Precipitation, a natural feature of weather systems in the Earth, is vitally important for the environment of any region. Under global climate change condition, the characteristics of precipitation have changed as a c... Precipitation, a natural feature of weather systems in the Earth, is vitally important for the environment of any region. Under global climate change condition, the characteristics of precipitation have changed as a consequence of enhanced global hydrological cycle. The source region of the Yellow River(SRYR), locating within the Qinghai-Tibet Plateau, is sensitive to the global climate change due to its complex orography and fragile ecosystem. To understand the precipitation characteristics and its impacts on the environment in the region, we studied the characteristics of rainy days and precipitation amount of different precipitation classes, such as light(0–5 and 5–10 mm), moderate(10–15, 15–20 and 20–25 mm) and heavy(≥25 mm) rains by analyzing the precipitation data of typical meteorological stations in the SRYR during the period 1961–2014, as well as the trends of persistent rainfall events and drought events. Results showed that annual average precipitation in this area had a non-significant(P〉0.05) increasing trend, and 82.5% of the precipitation occurred from May to September. Rainy days of the 0–5 mm precipitation class significantly decreased, whereas the rainy days of 5–10, 10–15, and 20–25 mm precipitation classes increased and that of ≥25 mm precipitation class decreased insignificantly. The persistent rainfall events of 1-or 2-day and more than 2-day showed an increasing trend, with the 1-or 2-day events being more frequent. Meanwhile, the number of short drought periods(≤10 days) increased while long drought periods(〉10 days) decreased. Since the 0–5 mm precipitation class had a huge impact on the grasslands productivity; the 5–10, 10–15, and 20–25 mm precipitation classes had positive effects on vegetation which rely on the deep soil water through moving nutrients and water into the root zone of these vegetation or through the plant-microbe interactions; the ≥25 mm precipitation class contributed to the floods; and more persistent rainfall events and fewer long drought events inferred positive effects on agriculture. Thus, these results indicate grassland degradation, less risk of floods, and the upgrading impact of climate change on agriculture. This study may provide scientific knowledge for policymakers to sustain the eco-environmental resources in the SYSR. 展开更多
关键词 precipitation characteristics climate change ECOsYsTEM water resources VEGETATION source region of theYellow river
下载PDF
Influencing factors of water resources in the source region of the Yellow River 被引量:7
17
作者 CHANG Guogang LI Lin +3 位作者 ZHU Xide WANG Zhenyu XIAO Jianshe LI Fengxia 《Journal of Geographical Sciences》 SCIE CSCD 2007年第2期131-140,共10页
Taking the source region of the Yellow River as a study area and based on the data from Madoi Meteorological Station and Huangheyan Hydrological Station covering the period 1955-2005, this paper analyses the changing ... Taking the source region of the Yellow River as a study area and based on the data from Madoi Meteorological Station and Huangheyan Hydrological Station covering the period 1955-2005, this paper analyses the changing trends of surface water resources, climate and frozen ground and reveals their causes. Results show that there exist frequent fluctuations from high to low water flow in the 51-year period. In general, the discharge has shown a de- clining trend in the 51 years especially since the 1990s. The annual distribution shows one peak which, year on year is getting smaller. (1) Precipitation has a significant and sustained influence on discharge. (2) A sharp rise of temperature resulted in the increase of evaporation and the decrease of discharge, which has a greater effect than on ice-snow melting. (3) Frozen ground tends to be degraded markedly. There is a significant positive correlation be- tween the permafrost thickness and the discharge. (4) Evaporation rates are significantly increasing, leading to the decrease of discharge. 70% of the discharge reduction resulted from climate change, and the remaining 30% may have been caused by human activities. 展开更多
关键词 surface water resources climate change frozen ground the source region of the Yellow river
下载PDF
Estimation of water balance in the source region of the Yellow River based on GRACE satellite data 被引量:8
18
作者 Min XU BaiSheng YE +2 位作者 QiuDong ZHAO ShiQing ZHANG Jiang WANG 《Journal of Arid Land》 SCIE CSCD 2013年第3期384-395,共12页
Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents... Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents the sum of precipitation, evaporation, surface runoff, soil water and groundwater exchanges. Water storage change data during the period of 2003-2008 for the source region of the Yellow River were collected from Gravity Recovery and Climate Experiment (GRACE) satellite data. The monthly actual evaporation was estimated according to the water balance equation. The simulated actual evaporation was significantly consistent and correlative with not only the observed pan (20 cm) data, but also the simulated results of the version 2 of Simple Biosphere model. The average annual evaporation of the Tangnaihai Basin was 506.4 mm, where evaporation in spring, summer, autumn and winter was 130.9 mm, 275.2 mm, 74.3 mm and 26.1 mm, and accounted for 25.8%, 54.3%, 14.7% and 5.2% of the average annual evaporation, respectively, The precipitation increased slightly and the actual evaporation showed an obvious decrease. The water storage change of the source region of the Yellow River displayed an increase of 0.51 mm per month from 2003 to 2008, which indicated that the storage capacity has significantly increased, probably caused by the degradation of permafrost and the increase of the thickness of active layers. The decline of actual evaporation and the increase of water storage capacity resulted in the increase of river runoff. 展开更多
关键词 actual evaporation GRACE satellite data water storage change water balance equation source region of the Yellow river
下载PDF
Legislation on protection of drinking water sources and local management practices in the Pearl River Delta region of China 被引量:6
19
作者 Zhigang Wang Yang Liu +2 位作者 Yingzhi Li Peng Zhao Jiangyu Yu 《Chinese Journal of Population,Resources and Environment》 2016年第2期144-152,共9页
The protection of drinking water sources is vital to urban development and public health.In this study,the current situation of the mandatory protection area for drinking water source in the Pearl River Delta region w... The protection of drinking water sources is vital to urban development and public health.In this study,the current situation of the mandatory protection area for drinking water source in the Pearl River Delta region was investigated using a method combining Google Earth with the field survey.The gaps between management practices and legislation requirements were analyzed.Finally,several countermeasures for water resource protection were proposed as follows:to promote delineation in a more scientific way,to safeguard the sanctity of the law,to make better plan on water saving,and to encourage public participation in supervision and management. 展开更多
关键词 Pearl river Delta region drinking water source protection area for drinking water source COUNTERMEAsUREs
下载PDF
Different Responses of Vegetation to Frozen Ground Degradation in the Source Region of the Yellow River from 1980 to 2018 被引量:4
20
作者 WANG Rui DONG Zhibao ZHOU Zhengchao 《Chinese Geographical Science》 SCIE CSCD 2020年第4期557-571,共15页
Frozen ground degradation under a warming climate profoundly influences the growth of alpine vegetation in the source region of the Qinghai-Tibet Plateau.This study investigated spatiotemporal variations in the frozen... Frozen ground degradation under a warming climate profoundly influences the growth of alpine vegetation in the source region of the Qinghai-Tibet Plateau.This study investigated spatiotemporal variations in the frozen ground distribution,the active layer thickness(ALT)of permafrost(PF)soil and the soil freeze depth(SFD)in seasonally frozen soil from 1980 to 2018 using the temperature at the top of permafrost(TTOP)model and Stefan equation.We compared the effects of these variations on vegetation growth among different frozen ground types and vegetation types in the source region of the Yellow River(SRYR).The results showed that approximately half of the PF area(20.37%of the SRYR)was projected to degrade into seasonally frozen ground(SFG)during the past four decades;furthermore,the areal average ALT increased by 3.47 cm/yr,and the areal average SFD decreased by 0.93 cm/yr from 1980 to 2018.Accordingly,the growing season Normalized Difference Vegetation Index(NDVI)presented an increasing trend of 0.002/10 yr,and the increase rate and proportion of areas with NDVI increase were largest in the transition zone where PF degraded to SFG(the PF to SFG zone).A correlation analysis indicated that variations in ALT and SFD in the SRYR were significantly correlated with increases of NDVI in the growing season.However,a rapid decrease in SFD(<-1.4 cm/10 yr)could have reduced the soil moisture and,thus,decreased the NDVI.The NDVI for most vegetation types exhibited a significant positive correlation with ALT and a negative correlation with SFD.However,the steppe NDVI exhibited a significant negative correlation with the SFD in the PF to SFG zone but a positive correlation in the SFG zone,which was mainly limited by water condition because of different change rates of the SFD. 展开更多
关键词 PERMAFROsT seasonally frozen ground vegetation dynamics climate change source region of the Yellow river
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部