针对电力电子变压器的非线性特性,传统PI控制的单相电力电子变压器整流级具有对参数变化敏感,响应速度慢,抗扰性能差的特点。提出了一种基于线性自抗扰控制(line active disturbance rejection control,LADRC)的电压环控制策略,该控制...针对电力电子变压器的非线性特性,传统PI控制的单相电力电子变压器整流级具有对参数变化敏感,响应速度慢,抗扰性能差的特点。提出了一种基于线性自抗扰控制(line active disturbance rejection control,LADRC)的电压环控制策略,该控制策略具有响应速度快、超调量小、鲁棒性强的特点。在仿真软件MATLAB/Simulink中通过搭建三级联H桥整流器模型进行仿真,并与传统PI控制器相比较,仿真结果表明所采用控制策略的优越性、有效性。展开更多
为了精确地反映死区时间对双有源桥式变换器(dual active bridge,DAB)移相角偏移与传输功率的影响,将缓冲电容的作用引入到DAB死区效应的分析中。通过设定最优死区时间将电感电流过零点排除在死区时段之外,降低了不同电压模式下死区过...为了精确地反映死区时间对双有源桥式变换器(dual active bridge,DAB)移相角偏移与传输功率的影响,将缓冲电容的作用引入到DAB死区效应的分析中。通过设定最优死区时间将电感电流过零点排除在死区时段之外,降低了不同电压模式下死区过程分析的难度,并得到一个更精确的DAB移相角与传输功率的模型。结果表明:应用该模型能够准确地计算出DAB任意工况下的静态工作点,从而提高DAB小信号建模的精度。展开更多
当电网不对称时,PWM整流器最大运行功率会受到功率器件容量的限制而降低。该文基于瞬时功率理论分析了PWM整流器在电网不对称时的数学模型。介绍了电网不对称时两种整流器的控制策略:平衡的正序电流控制(balanced positive sequence cur...当电网不对称时,PWM整流器最大运行功率会受到功率器件容量的限制而降低。该文基于瞬时功率理论分析了PWM整流器在电网不对称时的数学模型。介绍了电网不对称时两种整流器的控制策略:平衡的正序电流控制(balanced positive sequence current control,BPSC)和瞬时有功功率控制(instantaneous active power control,IAPC)。采用BPSC策略能够扩展PWM整流器最大运行功率,但有功功率波动较大,而IAPC策略能够抑制有功功率波动,但运行功率较小。在此基础上文中提出了一种平衡正序电流和瞬时有功功率的协调控制策略(hybrid balanced positive sequence and instantaneous active power control,HBPSIAPC),从而实现PWM整流器功率扩展和有功功率波动最小。通过采用标幺值,简化了理论推导和分析过程。最后,在实验室搭建了PWM整流器的实验平台,验证了所提出控制策略的可行性。展开更多
文摘针对电力电子变压器的非线性特性,传统PI控制的单相电力电子变压器整流级具有对参数变化敏感,响应速度慢,抗扰性能差的特点。提出了一种基于线性自抗扰控制(line active disturbance rejection control,LADRC)的电压环控制策略,该控制策略具有响应速度快、超调量小、鲁棒性强的特点。在仿真软件MATLAB/Simulink中通过搭建三级联H桥整流器模型进行仿真,并与传统PI控制器相比较,仿真结果表明所采用控制策略的优越性、有效性。
文摘为了精确地反映死区时间对双有源桥式变换器(dual active bridge,DAB)移相角偏移与传输功率的影响,将缓冲电容的作用引入到DAB死区效应的分析中。通过设定最优死区时间将电感电流过零点排除在死区时段之外,降低了不同电压模式下死区过程分析的难度,并得到一个更精确的DAB移相角与传输功率的模型。结果表明:应用该模型能够准确地计算出DAB任意工况下的静态工作点,从而提高DAB小信号建模的精度。
文摘当电网不对称时,PWM整流器最大运行功率会受到功率器件容量的限制而降低。该文基于瞬时功率理论分析了PWM整流器在电网不对称时的数学模型。介绍了电网不对称时两种整流器的控制策略:平衡的正序电流控制(balanced positive sequence current control,BPSC)和瞬时有功功率控制(instantaneous active power control,IAPC)。采用BPSC策略能够扩展PWM整流器最大运行功率,但有功功率波动较大,而IAPC策略能够抑制有功功率波动,但运行功率较小。在此基础上文中提出了一种平衡正序电流和瞬时有功功率的协调控制策略(hybrid balanced positive sequence and instantaneous active power control,HBPSIAPC),从而实现PWM整流器功率扩展和有功功率波动最小。通过采用标幺值,简化了理论推导和分析过程。最后,在实验室搭建了PWM整流器的实验平台,验证了所提出控制策略的可行性。