Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate ...Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.展开更多
A calculation scheme, which combines a horizontal upwind finite element method with vertical implicit differences, is used to establish a three-dimensional mathematical model of tidal motion and sediment transport in...A calculation scheme, which combines a horizontal upwind finite element method with vertical implicit differences, is used to establish a three-dimensional mathematical model of tidal motion and sediment transport in tidal current. Compared with those of the relative theoretical formula, the results are satisfactory. The model mentioned above has been applied to the water area of the Lianzhou Bay, Guangxi Province. On the basis of the analysis and comparison with the field data, it shows clearly that the model calculation results are reasonable.展开更多
Three-dimensional(3D)bioprinting is a rapidly growing technology that has been widely used in tissue engineering,disease studies,and drug screening.It provides the unprecedented capacity of depositing various types of...Three-dimensional(3D)bioprinting is a rapidly growing technology that has been widely used in tissue engineering,disease studies,and drug screening.It provides the unprecedented capacity of depositing various types of biomaterials,cells,and biomolecules in a layer-by-layer fashion,with precisely controlled spatial distribution.This technology is expected to address the organ-shortage issue in the future.In this review,we first introduce three categories of 3D bioprinting strategies:inkjet-based printing(IBP),extrusion-based printing(EBP),and light-based printing(LBP).Biomaterials and cells,which are normally referred to as“bioinks,”are then discussed.We also systematically describe the recent advancements of 3D bioprinting in fabricating cell-laden artificial tissues and organs with solid or hollow structures,including cartilage,bone,skin,muscle,vascular network,and so on.The development of organs-onchips utilizing 3D bioprinting technology for drug discovery and toxicity testing is reviewed as well.Finally,the main challenges in current studies and an outlook of the future research of 3D bioprinting are discussed.展开更多
Three dimensional(3D) bioprinting, which involves depositing bioinks(mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However,...Three dimensional(3D) bioprinting, which involves depositing bioinks(mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However, it remains challenging to prepare biomaterials with micro-nanostructures that accurately mimic the nanostructural features of natural tissues. A novel nanotechnological tool, electrospinning, permits the processing and modification of proper nanoscale biomaterials to enhance neural cell adhesion, migration, proliferation, differentiation, and subsequent nerve regeneration. The composite scaffold was prepared by combining 3D bioprinting with subsequent electrochemical deposition of polypyrrole and electrospinning of silk fibroin to form a composite polypyrrole/silk fibroin scaffold. Fourier transform infrared spectroscopy was used to analyze scaffold composition. The surface morphology of the scaffold was observed by light microscopy and scanning electron microscopy. A digital multimeter was used to measure the resistivity of prepared scaffolds. Light microscopy was applied to observe the surface morphology of scaffolds immersed in water or Dulbecco's Modified Eagle's Medium at 37℃ for 30 days to assess stability. Results showed characteristic peaks of polypyrrole and silk fibroin in the synthesized conductive polypyrrole/silk fibroin scaffold, as well as the structure of the electrospun nanofiber layer on the surface. The electrical conductivity was 1 × 10^-5–1 × 10^-3 S/cm, while stability was 66.67%. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was employed to measure scaffold cytotoxicity in vitro. Fluorescence microscopy was used to observe Ed U-labeled Schwann cells to quantify cell proliferation. Immunohistochemistry was utilized to detect S100β immunoreactivity, while scanning electron microscopy was applied to observe the morphology of adherent Schwann cells. Results demonstrated that the polypyrrole/silk fibroin scaffold was not cytotoxic and did not affect Schwann cell proliferation. Moreover, filopodia formed on the scaffold and Schwann cells were regularly arranged. Our findings verified that the composite polypyrrole/silk fibroin scaffold has good biocompatibility and may be a suitable material for neural tissue engineering.展开更多
Exact solutions of three-dimensional(3D)crack problems are much less in number than those of two-dimensional ones,especially for multi-field coupling media exhibiting a certain kind of material anisotropy.An exact3Dth...Exact solutions of three-dimensional(3D)crack problems are much less in number than those of two-dimensional ones,especially for multi-field coupling media exhibiting a certain kind of material anisotropy.An exact3Dthermoelastic solution has been reported for a uniformly heated penny-shaped crack in an infinite magnetoelectric space,with impermeable electromagnetic conditions assumed on the crack faces.Exact 3Dsolutions for the penny-shaped crack subjected to uniform or point temperature load are further presented here when the crack faces are electrically and magnetically permeable.The solutions,obtained by the potential theory method,are exact in the sense that all field variables are explicitly derived and expressed in terms of elementary functions.Along with the previously reported solution,the limits or bounds of the stress intensity factor at the crack-tip for a practical crack can be identified.展开更多
基金supported by the National Natural Science Foundation of China (10872096)the Open Fund of State Key Laboratory of Explosion Science and Technology, Beijing University of Science and Technology (KFJJ09-13)
文摘Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.
文摘A calculation scheme, which combines a horizontal upwind finite element method with vertical implicit differences, is used to establish a three-dimensional mathematical model of tidal motion and sediment transport in tidal current. Compared with those of the relative theoretical formula, the results are satisfactory. The model mentioned above has been applied to the water area of the Lianzhou Bay, Guangxi Province. On the basis of the analysis and comparison with the field data, it shows clearly that the model calculation results are reasonable.
基金The authors would like to acknowledge support from the National Natural Science Foundation of China(51875518,51475419,and 81501607)the Natural Science Foundation of Zhejiang Province of China(LY15H160019)the Key Research and Development Projects of Zhejiang Province(2017C01054).
文摘Three-dimensional(3D)bioprinting is a rapidly growing technology that has been widely used in tissue engineering,disease studies,and drug screening.It provides the unprecedented capacity of depositing various types of biomaterials,cells,and biomolecules in a layer-by-layer fashion,with precisely controlled spatial distribution.This technology is expected to address the organ-shortage issue in the future.In this review,we first introduce three categories of 3D bioprinting strategies:inkjet-based printing(IBP),extrusion-based printing(EBP),and light-based printing(LBP).Biomaterials and cells,which are normally referred to as“bioinks,”are then discussed.We also systematically describe the recent advancements of 3D bioprinting in fabricating cell-laden artificial tissues and organs with solid or hollow structures,including cartilage,bone,skin,muscle,vascular network,and so on.The development of organs-onchips utilizing 3D bioprinting technology for drug discovery and toxicity testing is reviewed as well.Finally,the main challenges in current studies and an outlook of the future research of 3D bioprinting are discussed.
基金supported by the National Natural Science Foundation of China,No.81671823,81701835a grant from the National Key Research and Development Program of China,No.2016YFC1101603a grant from the Natural Science Research Program of Nantong of China,No.MS12016056
文摘Three dimensional(3D) bioprinting, which involves depositing bioinks(mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However, it remains challenging to prepare biomaterials with micro-nanostructures that accurately mimic the nanostructural features of natural tissues. A novel nanotechnological tool, electrospinning, permits the processing and modification of proper nanoscale biomaterials to enhance neural cell adhesion, migration, proliferation, differentiation, and subsequent nerve regeneration. The composite scaffold was prepared by combining 3D bioprinting with subsequent electrochemical deposition of polypyrrole and electrospinning of silk fibroin to form a composite polypyrrole/silk fibroin scaffold. Fourier transform infrared spectroscopy was used to analyze scaffold composition. The surface morphology of the scaffold was observed by light microscopy and scanning electron microscopy. A digital multimeter was used to measure the resistivity of prepared scaffolds. Light microscopy was applied to observe the surface morphology of scaffolds immersed in water or Dulbecco's Modified Eagle's Medium at 37℃ for 30 days to assess stability. Results showed characteristic peaks of polypyrrole and silk fibroin in the synthesized conductive polypyrrole/silk fibroin scaffold, as well as the structure of the electrospun nanofiber layer on the surface. The electrical conductivity was 1 × 10^-5–1 × 10^-3 S/cm, while stability was 66.67%. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was employed to measure scaffold cytotoxicity in vitro. Fluorescence microscopy was used to observe Ed U-labeled Schwann cells to quantify cell proliferation. Immunohistochemistry was utilized to detect S100β immunoreactivity, while scanning electron microscopy was applied to observe the morphology of adherent Schwann cells. Results demonstrated that the polypyrrole/silk fibroin scaffold was not cytotoxic and did not affect Schwann cell proliferation. Moreover, filopodia formed on the scaffold and Schwann cells were regularly arranged. Our findings verified that the composite polypyrrole/silk fibroin scaffold has good biocompatibility and may be a suitable material for neural tissue engineering.
基金This work was supported by the National Natural Sci- ence Foundation of China (11321202) and the Specialized Research Fund for the Doctoral Program of Higher Educa- tion (2013010 1110120).
文摘Exact solutions of three-dimensional(3D)crack problems are much less in number than those of two-dimensional ones,especially for multi-field coupling media exhibiting a certain kind of material anisotropy.An exact3Dthermoelastic solution has been reported for a uniformly heated penny-shaped crack in an infinite magnetoelectric space,with impermeable electromagnetic conditions assumed on the crack faces.Exact 3Dsolutions for the penny-shaped crack subjected to uniform or point temperature load are further presented here when the crack faces are electrically and magnetically permeable.The solutions,obtained by the potential theory method,are exact in the sense that all field variables are explicitly derived and expressed in terms of elementary functions.Along with the previously reported solution,the limits or bounds of the stress intensity factor at the crack-tip for a practical crack can be identified.