期刊文献+
共找到141,497篇文章
< 1 2 250 >
每页显示 20 50 100
From single to combinatorial therapies in spinal cord injuries for structural and functional restoration
1
作者 Ernesto Doncel-Pérez Gabriel Guízar-Sahagún Israel Grijalva-Otero 《Neural Regeneration Research》 SCIE CAS 2025年第3期660-670,共11页
Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychoso... Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities;the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord. 展开更多
关键词 neural regeneration NEUROPROTECTION spinal cord injury repair spinal cord injury treatments structural restoration of spinal cord injury
下载PDF
Sex-dependent alterations in extracellular vesicles linking chronic spinal cord injury to brain neuroinflammation and neurodegeneration
2
作者 Yun Li Junfang Wu 《Neural Regeneration Research》 SCIE CAS 2025年第2期483-484,共2页
Traumatic spinal cord injury(SCI)is a devastating exogenous injury with long-lasting consequences and a leading cause of death and disability worldwide.Advances in assistive technology,rehabilitative interventions,and... Traumatic spinal cord injury(SCI)is a devastating exogenous injury with long-lasting consequences and a leading cause of death and disability worldwide.Advances in assistive technology,rehabilitative interventions,and the ability to identify and intervene in secondary conditions have significantly increased the long-term survival rate of SCI patients,with some people even living well into their seventh or eighth decade.These survival changes have led neurotrauma researchers to examine how SCI interacts with brain aging.Public health and epidemiological data showed that patients with long-term SCI can have a lower life expectancy and quality of life,along with a higher risk of comorbidities and complications. 展开更多
关键词 alterations INFLAMMATION injury
下载PDF
Spinal cord injury regenerative therapy development:integration of design of experiments
3
作者 Yuji Okano Hideyuki Okano Yoshitaka Kase 《Neural Regeneration Research》 SCIE CAS 2025年第9期2571-2573,共3页
Spinal cord injury(SCI)can cause motor and sensory paralysis,and autonomic nervous system disorders including malfunction of urination and defecation,thereby significantly impairing the quality of life.Researchers con... Spinal cord injury(SCI)can cause motor and sensory paralysis,and autonomic nervous system disorders including malfunction of urination and defecation,thereby significantly impairing the quality of life.Researchers continue to explo re new stem cell strategies for the treatment of paralysis by transpla nting human induced pluripotent stem cell-derived neural ste m/progenitor cells(hiPSCNS/PCs)into spinal cord injured tissues. 展开更多
关键词 SPINAL PARALYSIS injury
下载PDF
Deciphering the mechanobiology of microglia in traumatic brain injury with advanced microsystems
4
作者 Anthony Procès Sylvain Gabriele 《Neural Regeneration Research》 SCIE CAS 2025年第8期2304-2306,共3页
Advanced microsystems in traumatic brain injury research:Traumatic brain injury(TBI)results from a mechanical insult to the brain,leading to neuronal and axonal damage and subsequently causing a secondary injury.Withi... Advanced microsystems in traumatic brain injury research:Traumatic brain injury(TBI)results from a mechanical insult to the brain,leading to neuronal and axonal damage and subsequently causing a secondary injury.Within minutes of TBI,a neuroinflammatory response is triggered,driven by intricate molecular and cellular inflammatory processes. 展开更多
关键词 TRAUMATIC injury DAMAGE
下载PDF
Visualizing traumatic brain injury:ocular clues for diagnosis and assessment
5
作者 Morteza Abyadeh Vivek Gupta +2 位作者 Yuyi You Joao A.Paulo Mehdi Mirzaei 《Neural Regeneration Research》 SCIE CAS 2025年第5期1399-1400,共2页
Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external sudden physical force or shock to the head.It is considered a silent public health epidemic causing significant death and disab... Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external sudden physical force or shock to the head.It is considered a silent public health epidemic causing significant death and disability globally.There were 64,000 TBI related deaths reported in the USA in 2020,with about US$76 billion in direct and indirect medical costs annually. 展开更多
关键词 DIAGNOSIS OCULAR injury
下载PDF
A lead role for a“secondary”axonal injury response
6
作者 Melissa A.Rudy Trent A.Watkins 《Neural Regeneration Research》 SCIE CAS 2025年第2期469-470,共2页
Stress signaling following axon injury stimulates a transcriptional program for regeneration that might be exploited to promote central nervous system repair.However,this stress response drives neuronal apoptosis in n... Stress signaling following axon injury stimulates a transcriptional program for regeneration that might be exploited to promote central nervous system repair.However,this stress response drives neuronal apoptosis in non-regenerative environments.This duality presents a quandary for the development of therapeutic interventions:manipulating stress signaling to enhance recovery of damaged neurons risks accelerating neurodegeneration or restricting regenerative potential.This dichotomy is well illustrated by the fates of retinal ganglion cells(RGCs)following optic nerve crush.In this central nervous system injury model,disruption of a stress-activated MAP kinase(MAPK)cascade blocks the extensive apoptosis of RGCs that occurs in wild-type mice(Watkins et al.,2013;Welsbie et al.,2017). 展开更多
关键词 injury AXONAL STRESS
下载PDF
Secretome of polarized macrophages:potential for targeting inflammatory dynamics in spinal cord injury
7
作者 Andreia Monteiro Susana Monteiro Nuno A.Silva 《Neural Regeneration Research》 SCIE CAS 2025年第11期3231-3232,共2页
Spinal cord injury(SCI)involves an initial traumatic phase,followed by secondary events such as ischemia,increased blood-spinal cord barrier permeability,ionic disruption,glutamate excitotoxicity,and metabolic alterat... Spinal cord injury(SCI)involves an initial traumatic phase,followed by secondary events such as ischemia,increased blood-spinal cord barrier permeability,ionic disruption,glutamate excitotoxicity,and metabolic alterations.A pe rsistent and exagge rated inflammato ry response within the spinal cord accompanies these events(Lima et al.,2022).The complexity and interplay of these mechanisms exacerbate the initial injury,leading to a degenerative process at the injury site.While the initial trauma is unavoidable,the secondary injury begins within minutes and can last for months,creating an optimal window for therapeutic intervention. 展开更多
关键词 alterations injury COMPANIES
下载PDF
Remaking a connection:molecular players involved in post-injury synapse formation
8
作者 Diogo Tomé Ramiro D.Almeida 《Neural Regeneration Research》 SCIE CAS 2025年第6期1719-1720,共2页
Functional recovery from central nervous system(CNS)trauma depends not only on axon regeneration or compensatory sprouting of uninjured fibers but also on the ability of newly grown axons to establish functional synap... Functional recovery from central nervous system(CNS)trauma depends not only on axon regeneration or compensatory sprouting of uninjured fibers but also on the ability of newly grown axons to establish functional synapses with appropriate targets.Although several studies have successfully promoted long-distance axonal regeneration in distinct CNS injury models,none of them have resulted in a viable therapeutic approach for patient recovery.A possible reason may be the lack of new synaptogenesis for reestablishing the circuitry lost after injury.Herein,we discuss how our understanding of the mechanisms that instruct synapse formation in the injured nervous system may contribute to the design of new strategies to promote functional restoration in traumatic CNS disorders. 展开更多
关键词 viable injury instru
下载PDF
New insights on the role of chondroitin sulfate proteoglycans in neural stem cell–mediated repair in spinal cord injury
9
作者 Seyed Mojtaba Hosseini Soheila Karimi-Abdolrezaee 《Neural Regeneration Research》 SCIE CAS 2025年第6期1699-1700,共2页
Extensive neurodegeneration is a hallmark of traumatic spinal cord injury (SCI) that underlies permanent sensorimotor and autonomic impairments (Alizadeh et al.,2019).Following the primary impact,the spinal cord under... Extensive neurodegeneration is a hallmark of traumatic spinal cord injury (SCI) that underlies permanent sensorimotor and autonomic impairments (Alizadeh et al.,2019).Following the primary impact,the spinal cord undergoes a cascade of secondary injury mechanisms that are driven by disruption of the blood-spinal cord ba rrier,vascula r inju ry,glial reactivity,neu roinfla mmation,oxidative stress,lipid peroxidation,and glutamate excitotoxicity that culminate in neuronal and oligodendroglial cell death,demyelination,and axonal damage(Alizadeh et al.,2019).To achieve a meaningful functional recovery after SCI,regeneration of new neurons and oligodendrocytes and their successful growth and integration within the neural network are critical steps for reconstructing the damaged spinal cord tissue (Fischer et al.,2020). 展开更多
关键词 PEROXIDATION FISCHER injury
下载PDF
Injury/ischemia-induced stem cells: up-to-date knowledge and future perspectives for neural regeneration
10
作者 Takayuki Nakagomi 《Neural Regeneration Research》 SCIE CAS 2025年第3期797-798,共2页
Brain injuries like ischemic stroke induce endogenous stem cell production. Although the precise traits of stem cells in pathological brains remain unclear, we previously demonstrated that injury/ischemia-induced stem... Brain injuries like ischemic stroke induce endogenous stem cell production. Although the precise traits of stem cells in pathological brains remain unclear, we previously demonstrated that injury/ischemia-induced stem cells(iSCs)are present in the post-stroke mouse(Nakagomi et al.,2009)and human brains(Beppu et al.,2019). 展开更多
关键词 ISCHEMIA INJURIES
下载PDF
Mitophagy in acute central nervous system injuries:regulatory mechanisms and therapeutic potentials
11
作者 Siyi Xu Junqiu Jia +2 位作者 Rui Mao Xiang Cao Yun Xu 《Neural Regeneration Research》 SCIE CAS 2025年第9期2437-2453,共17页
Acute central nervous system injuries,including ischemic stro ke,intracerebral hemorrhage,subarachnoid hemorrhage,traumatic brain injury,and spinal co rd injury,are a major global health challenge.Identifying optimal ... Acute central nervous system injuries,including ischemic stro ke,intracerebral hemorrhage,subarachnoid hemorrhage,traumatic brain injury,and spinal co rd injury,are a major global health challenge.Identifying optimal therapies and improving the long-term neurological functions of patients with acute central nervous system injuries are urgent priorities.Mitochondria are susceptible to damage after acute central nervous system injury,and this leads to the release of toxic levels of reactive oxygen species,which induce cell death.Mitophagy,a selective form of autophagy,is crucial in eliminating redundant or damaged mitochondria during these events.Recent evidence has highlighted the significant role of mitophagy in acute central nervous system injuries.In this review,we provide a comprehensive overview of the process,classification,and related mechanisms of mitophagy.We also highlight the recent developments in research into the role of mitophagy in various acute central nervous system injuries and drug therapies that regulate mitophagy.In the final section of this review,we emphasize the potential for treating these disorders by focusing on mitophagy and suggest future research paths in this area. 展开更多
关键词 autophagy intracerebral hemorrhage ischemic stroke mitochondria mitochondrial biogenesis mitochondrial quality control MITOPHAGY spinal cord injury subarachnoid hemorrhage traumatic brain injury
下载PDF
Stepping up after spinal cord injury:negotiating an obstacle during walking
12
作者 Alain Frigon Charly G.Lecomte 《Neural Regeneration Research》 SCIE CAS 2025年第7期1919-1929,共11页
Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles.After spinal cord injury,stepping over an obstacle becomes challenging.Stepping over an obstacle requires senso... Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles.After spinal cord injury,stepping over an obstacle becomes challenging.Stepping over an obstacle requires sensorimotor transformations in several structures of the brain,including the parietal cortex,premotor cortex,and motor cortex.Sensory information and planning are transformed into motor commands,which are sent from the motor cortex to spinal neuronal circuits to alter limb trajectory,coordinate the limbs,and maintain balance.After spinal cord injury,bidirectional communication between the brain and spinal cord is disrupted and animals,including humans,fail to voluntarily modify limb trajectory to step over an obstacle.Therefore,in this review,we discuss the neuromechanical control of stepping over an obstacle,why it fails after spinal cord injury,and how it recovers to a certain extent. 展开更多
关键词 BIOMECHANICS locomotion NEUROPHYSIOLOGY obstacle negotiation spinal cord injury
下载PDF
Hypidone hydrochloride(YL-0919)ameliorates functional deficits after traumatic brain injury in mice by activating the sigma-1 receptor for antioxidation 被引量:1
13
作者 Yafan Bai Hui Ma +5 位作者 Yue Zhang Jinfeng Li Xiaojuan Hou Yixin Yang Guyan Wang Yunfeng Li 《Neural Regeneration Research》 SCIE CAS 2025年第8期2325-2336,共12页
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0... Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury. 展开更多
关键词 antidepressant drug blood-brain barrier cognitive function hypidone hydrochloride(YL-0919) neurological function nuclear factor-erythroid 2 related factor 2 oxidative stress sigma-1 receptor superoxide dismutase traumatic brain injury
下载PDF
Complement-dependent neuroinflammation in spinal cord injury:from pathology to therapeutic implications
14
作者 Hassan Saad Bachar El Baba +10 位作者 Ali Tfaily Firas Kobeissy Juanmarco Gutierrez Gonzalez Daniel Refai Gerald R.Rodts Christian Mustroph David Gimbel Jonathan Grossberg Daniel L.Barrow Matthew F.Gary Ali M.Alawieh 《Neural Regeneration Research》 SCIE CAS 2025年第5期1324-1335,共12页
Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery... Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery in this population.Following the thorough investigation of the complement system in triggering and propagating cerebral neuroinflammation,a similar role for complement in spinal neuroinflammation is a focus of ongoing research.In this work,we survey the current literature investigating the role of complement in spinal cord injury including the sources of complement proteins,triggers of complement activation,and role of effector functions in the pathology.We study relevant data demonstrating the different triggers of complement activation after spinal cord injury including direct binding to cellular debris,and or activation via antibody binding to damage-associated molecular patterns.Several effector functions of complement have been implicated in spinal cord injury,and we critically evaluate recent studies on the dual role of complement anaphylatoxins in spinal cord injury while emphasizing the lack of pathophysiological understanding of the role of opsonins in spinal cord injury.Following this pathophysiological review,we systematically review the different translational approaches used in preclinical models of spinal cord injury and discuss the challenges for future translation into human subjects.This review emphasizes the need for future studies to dissect the roles of different complement pathways in the pathology of spinal cord injury,to evaluate the phases of involvement of opsonins and anaphylatoxins,and to study the role of complement in white matter degeneration and regeneration using translational strategies to supplement genetic models. 展开更多
关键词 COMPLEMENT NEUROINFLAMMATION NEUROPLASTICITY regeneration spinal cord injury targeted therapy
下载PDF
Astrocytes, reactive astrogliosis, and glial scar formation in traumatic brain injury
15
作者 María Belén Cieri Alberto Javier Ramos 《Neural Regeneration Research》 SCIE CAS 2025年第4期973-989,共17页
Traumatic brain injury is a global health crisis,causing significant death and disability worldwide.Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive im... Traumatic brain injury is a global health crisis,causing significant death and disability worldwide.Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments,with astrocytes involved in this response.Following traumatic brain injury,astrocytes rapidly become reactive,and astrogliosis propagates from the injury core to distant brain regions.Homeostatic astroglial proteins are downregulated near the traumatic brain injury core,while pro-inflammatory astroglial genes are overexpressed.This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery.In addition,glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration,but in the long term impedes axonal reconnection and functional recovery.Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications.Statins,cannabinoids,progesterone,beta-blockers,and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes.In this review,we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury,especially using cell-targeted strategies with miRNAs or lncRNA,viral vectors,and repurposed drugs. 展开更多
关键词 ASTROCYTE glial scar innate immunity NEUROINFLAMMATION stab injury Toll-like receptors
下载PDF
Combinatorial therapies for spinal cord injury repair
16
作者 Carla S.Sousa Andreia Monteiro +1 位作者 António J.Salgado Nuno A.Silva 《Neural Regeneration Research》 SCIE CAS 2025年第5期1293-1308,共16页
Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed t... Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed to damaged neurons, inhibitory molecules, dysfunctional immune response, and glial scarring. Unfortunately, currently, there are no effective treatments available that can fully repair the spinal cord and improve functional outcomes. Nevertheless, numerous pre-clinical approaches have been studied for spinal cord injury recovery, including using biomaterials, cells, drugs, or technological-based strategies. Combinatorial treatments, which target various aspects of spinal cord injury pathophysiology, have been extensively tested in the last decade. These approaches aim to synergistically enhance repair processes by addressing various obstacles faced during spinal cord regeneration. Thus, this review intends to provide scientists and clinicians with an overview of pre-clinical combinatorial approaches that have been developed toward the solution of spinal cord regeneration as well as update the current knowledge about spinal cord injury pathophysiology with an emphasis on the current clinical management. 展开更多
关键词 electric stimulation neural tissue regeneration NEUROPROTECTION POLYTHERAPY spinal cord injury
下载PDF
Pharmacological intervention for chronic phase of spinal cord injury
17
作者 Chihiro Tohda 《Neural Regeneration Research》 SCIE CAS 2025年第5期1377-1389,共13页
Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challengin... Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challenging issues in spinal cord injury. As spinal cord injury progresses to the chronic phase, lost motor and sensory functions are not recovered. Several reasons may be attributed to the failure of recovery from chronic spinal cord injury. These include factors that inhibit axonal growth such as activated astrocytes, chondroitin sulfate proteoglycan, myelin-associated proteins, inflammatory microglia, and fibroblasts that accumulate at lesion sites. Skeletal muscle atrophy due to denervation is another chronic and detrimental spinal cord injury–specific condition. Although several intervention strategies based on multiple outlooks have been attempted for treating spinal cord injury, few approaches have been successful. To treat chronic spinal cord injury, neural cells or tissue substitutes may need to be supplied in the cavity area to enable possible axonal growth. Additionally, stimulating axonal growth activity by extrinsic factors is extremely important and essential for maintaining the remaining host neurons and transplanted neurons. This review focuses on pharmacotherapeutic approaches using small compounds and proteins to enable axonal growth in chronic spinal cord injury. This review presents some of these candidates that have shown promising outcomes in basic research(in vivo animal studies) and clinical trials: AA-NgR(310)ecto-Fc(AXER-204), fasudil, phosphatase and tensin homolog protein antagonist peptide 4, chondroitinase ABC, intracellular sigma peptide,(-)-epigallocatechin gallate, matrine, acteoside, pyrvate kinase M2, diosgenin, granulocyte-colony stimulating factor, and fampridine-sustained release. Although the current situation suggests that drug-based therapies to recover function in chronic spinal cord injury are limited, potential candidates have been identified through basic research, and these candidates may be subjects of clinical studies in the future. Moreover, cocktail therapy comprising drugs with varied underlying mechanisms may be effective in treating the refractory status of chronic spinal cord injury. 展开更多
关键词 axonal growth chronic phase clinical study PHARMACOTHERAPY spinal cord injury
下载PDF
Treatment of spinal cord injury with biomaterials and stem cell therapy in non-human primates and humans
18
作者 Ana Milena Silva Olaya Fernanda Martins Almeida +1 位作者 Ana Maria Blanco Martinez Suelen Adriani Marques 《Neural Regeneration Research》 SCIE CAS 2025年第2期343-353,共11页
Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied fo... Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied for years,which are not entirely efficient,researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach,seeking to promote neuronal recovery after spinal cord injury.Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and,consequently,boosting functional recovery.Although the majority of experimental research has been conducted in rodents,there is increasing recognition of the importance,and need,of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans.This article is a literature review from databases(PubMed,Science Direct,Elsevier,Scielo,Redalyc,Cochrane,and NCBI)from 10 years ago to date,using keywords(spinal cord injury,cell therapy,non-human primates,humans,and bioengineering in spinal cord injury).From 110 retrieved articles,after two selection rounds based on inclusion and exclusion criteria,21 articles were analyzed.Thus,this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans,aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans. 展开更多
关键词 BIOENGINEERING BIOMATERIALS cell therapy humans non-human primates spinal cord injury stem cell therapy
下载PDF
Metabolic reprogramming: a new option for the treatment of spinal cord injury
19
作者 Jiangjie Chen Jinyang Chen +11 位作者 Chao Yu Kaishun Xia Biao Yang Ronghao Wang Yi Li Kesi Shi Yuang Zhang Haibin Xu Xuesong Zhang Jingkai Wang Qixin Chen Chengzhen Liang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1042-1057,共16页
Spinal cord injuries impose a notably economic burden on society,mainly because of the severe after-effects they cause.Despite the ongoing development of various therapies for spinal cord injuries,their effectiveness ... Spinal cord injuries impose a notably economic burden on society,mainly because of the severe after-effects they cause.Despite the ongoing development of various therapies for spinal cord injuries,their effectiveness remains unsatisfactory.However,a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming.In this review,we explore the metabolic changes that occur during spinal cord injuries,their consequences,and the therapeutic tools available for metabolic reprogramming.Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling.However,spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism,lipid metabolism,and mitochondrial dysfunction.These metabolic disturbances lead to corresponding pathological changes,including the failure of axonal regeneration,the accumulation of scarring,and the activation of microglia.To rescue spinal cord injury at the metabolic level,potential metabolic reprogramming approaches have emerged,including replenishing metabolic substrates,reconstituting metabolic couplings,and targeting mitochondrial therapies to alter cell fate.The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury.To further advance the metabolic treatment of the spinal cord injury,future efforts should focus on a deeper understanding of neurometabolism,the development of more advanced metabolomics technologies,and the design of highly effective metabolic interventions. 展开更多
关键词 AXONS GLYCOLYSIS metabolic reprogramming metabolism mitochondria neural regeneration NEUROPROTECTION oxidative phosphorylation spinal cord injury therapy
下载PDF
Advances in therapies using mesenchymal stem cells and their exosomes for treatment of peripheral nerve injury:state of the art and future perspectives
20
作者 Fatima Aldali Chunchu Deng +1 位作者 Mingbo Nie Hong Chen 《Neural Regeneration Research》 SCIE CAS 2025年第11期3151-3171,共21页
“Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health pro... “Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health problem.Although severed peripheral nerves have been effectively joined and various therapies have been offered,recovery of sensory or motor functions remains limited,and efficacious therapies for complete repair of a nerve injury remain elusive.The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function.Mesenchymal stem cells,as large living cells responsive to the environment,secrete various factors and exosomes.The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins,microRNA,and messenger RNA derived from parent mesenchymal stem cells.Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function,offering solutions to changes associated with cell-based therapies.Despite ongoing investigations,mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage.A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation.This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury,exploring the underlying mechanisms.Subsequently,it provides an overview of the current status of mesenchymal stem cell and exosomebased therapies in clinical trials,followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes.Finally,the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes,offering potential solutions and guiding future directions. 展开更多
关键词 clinical trials EXOSOME extracellular vesicles mesenchymal stem cells nerve regeneration peripheral nerve injury pre-clinical experiments
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部