Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive to...Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive tool for characterizing the microstructure of soil samples exposed to a range of damage levels induced by dry-wet cycles.Subsequently,the variations of pore distribution and permeability due to drywet cycling effects were revealed based on three-dimensional(3D)pore distribution analysis and seepage simulations.According to the results,granite residual soils could be separated into four different components,namely,pores,clay,quartz,and hematite,from micro-CT images.The reconstructed 3D pore models dynamically demonstrated the expanding and connecting patterns of pore structures during drywet cycles.The values of porosity and connectivity are positively correlated with the number of dry-wet cycles,which were expressed by exponential and linear functions,respectively.The pore volume probability distribution curves of granite residual soil coincide with the χ^(2)distribution curve,which verifies the effectiveness of the assumption of χ^(2)distribution probability.The pore volume distribution curves suggest that the pores in soils were divided into four types based on their volumes,i.e.micropores,mesopores,macropores,and cracks.From a quantitative and visual perspective,considerable small pores are gradually transformed into cracks with a large volume and a high connectivity.Under the action of dry-wet cycles,the number of seepage flow streamlines which contribute to water permeation in seepage simulation increases distinctly,as well as the permeability and hydraulic conductivity.The calculated hydraulic conductivity is comparable with measured ones with an acceptable error margin in general,verifying the accuracy of seepage simulations based on micro-CT results.展开更多
Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lu...Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the puncture accuracy of elderly patients, shorten the puncture time, reduce the number of punctures, and increase the amount of puncture pathological tissue, without increasing pneumothorax and hemorrhage complications. We look forward to verifying this in a phase III randomized controlled clinical study. .展开更多
Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurat...Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurately characterize and predict the SRM's mechanical properties. This study reports a novel numerical method incorporating microfocus computed tomography and PFC3D codes to probe the deformation and failure processes of SRM. The three-dimensional (3D) PFC models that represent the SRM's complex structures were built. By simulating the entire failure process in PFC3D, the SRM's strength, elastic modulus and crack growth were obtained. The influence of rock ratios on the SRM's strength, deformation and failure processes, as well as its internal mesoscale mechanism, were analyzed. By comparing simulation results with experimental data, it was verified that the 3D PFC models were in good agreement with SRM's real structure and the SRM's compression process, deformation and failure patterns; its intrinsic mesomechanism can be effectively analyzed based on such 3D PFC models.展开更多
Objective :To investigate the influences of motion artifacts on three-dimensional (3D) reconstruction volume and conformal radiotherapy planning. Methods: A phantom which can mimic the clip motion of lung tumor al...Objective :To investigate the influences of motion artifacts on three-dimensional (3D) reconstruction volume and conformal radiotherapy planning. Methods: A phantom which can mimic the clip motion of lung tumor along the cranial-caudal direction is constructed by step motor, small ball of polyethylene and potato. Ten different scan protocols were set and CT data of the phantom were acquired by using a commercial GE LightSpeedl6 CT scanner. The 3D reconstruction of the CT data was implemented by adopting volume-rendering technology of GE AdvantageSim 6.0 system. The reconstructed volumes of each target in different scan protocols were measured through 3D measuring tools. Thus, relative deviations of the reconstruction volumes between moving targets and static ones were determined. The three-dimensional conformal radiation therapy (3D- CRT) plans and conformal fields were created and compared for a static/moving target with the WiMRT treatment planning system (TPS). Results:For a static target, there was no obvious difference among the 3D reconstruction volumes when the CT data were acquired with different pitches and slices. The appearance of 3D reconstruction volume and 3D conformal field of a moving target was quite different from that of static one. The maximum relative deviation is nearly 90% for a moving target scanned with different scan protocols. The relative deviations are variable among the different targets, about from -39.8% to 89.5% for a smaller target and from - 18.4% to 20.5% for a larger one. Conclusion :The motion artifacts have great effects on 3 D-CRT planning and reconstruction volume, which will greatly induce distorted conformal radiation fields and false DVHs for a moving target.展开更多
Three-dimensional medical image visualization becomes an essential part for medical field, including computer aided diagnosis, surgery planning and simulation, artificial limb surgery, radiotherapy planning, and teach...Three-dimensional medical image visualization becomes an essential part for medical field, including computer aided diagnosis, surgery planning and simulation, artificial limb surgery, radiotherapy planning, and teaching etc. In this paper, marching cubes algorithm is adopted to reconstruct the 3-D images for the CT image sequence in DICOM format under theVC++6.0 and the visual package VTK platform. The relatively simple interactive operations such as rotation and transfer can be realized on the platform. Moreover, the normal vector and interior point are calculated to form the virtual clipping plane, which is then used to incise the 3-D object. Information of the virtual slice can be obtained, in the mean while the virtual slice images are displayed on the screen. The technique can realize the real time interaction extraction of virtual slice on 3-D CT image. The cuboids structured can be zoomed, moved and eircumrotated by operating mouse to incise the 3-D reconstruction object. Real time interaction can be realized by clipping the reconstruction object. The coordinates can be acquired by the mouse clicking in the 3D space, to realize the point mouse pick-up as well angle and distance interactive measurement. We can get quantitative information about 3-D images through measurement.展开更多
In this study,the permeabilities of Berea and Otway sandstones were measured under different confining pressures,and porosity was investigated through mercury intrusion porosimetry(MIP).The total porosities of the Ber...In this study,the permeabilities of Berea and Otway sandstones were measured under different confining pressures,and porosity was investigated through mercury intrusion porosimetry(MIP).The total porosities of the Berea and Otway sandstones were approximately 17.4%and 25%,respectively.Pore size distributions of each sandstone were almost the same,but the pores in the Otway sandstone were slightly narrower.However,the permeability of the Otway sandstone was smaller than that of the Berea sandstone by one order of magnitude.Three-dimensional(3D)void geometry and geometrical properties of the void spaces relevant to flow were compared to obtain the relation between the permeability differences and porosities of the two sandstones.The 3D geometrical analysis using microfocus X-ray computed tomography(CT)was performed,and the pore geometries of both sandstones were compared using the 3D medial axis(3DMA)method.Pore and throat radii,pore coordination number,tortuosity,number of connecting paths,connecting path volume,and other factors were determined using 3DMA.The Otway sandstone was characterized by a small effective throat/pore radius ratio.Based on the fluid flow mechanism,the lower effective throat/pore radius ratio results in a lower permeability induced by the fluid energy loss,which means that the 3D geometrical shape of void spaces affects the permeability value.展开更多
The real contact area(RCA)of randomly rough contacts has received a great deal of attention because it correlates strongly with friction,lubrication,sealing,and conductivity.Simulations have revealed that the RCA asso...The real contact area(RCA)of randomly rough contacts has received a great deal of attention because it correlates strongly with friction,lubrication,sealing,and conductivity.Simulations have revealed that the RCA associated with deterministic normal squeezing loads increases when tangential loads are also applied,in a phenomenon called junction growth.However,experimental investigations of the junction growth of randomly rough contacts are rare.Here,we used X-ray computed tomography(CT)to measure junction growth when two aluminum alloy surfaces were in contact.A high-resolution experimental setup was used to apply loads and observe contact behaviors at a resolution of 4μm.The RCA and average contact gaps were computed using a three-dimensional(3D)geometric model constructed from gray CT images using the Otsu thresholding method.The results showed that the RCA increased as the normal load increased.The RCA increased by 22.67%after a tangential load was applied(junction growth),and the average gap decreased by 14.01%after a tangential load was applied.Thus,X-ray CT accurately measured the junction growth as a novel quantitative method.展开更多
The traditional computed tomography(CT)reconstruction methods are noisy,low resolution,poor contrast,and generally not suitable to detect the smaller flaws.Besides,the filter design is also difficult.The CT characteri...The traditional computed tomography(CT)reconstruction methods are noisy,low resolution,poor contrast,and generally not suitable to detect the smaller flaws.Besides,the filter design is also difficult.The CT characteristics reconstruction technology was brought forward to improve in these aspects,which is defined to directly reconstruct the characteristics of the projection for the best requirements not the overall image quality.The two-dimension(2D)and three-dimension(3D)CT characteristics reconstruction algorithm were firstly introduced,then by detailed analysis,experimental results and comparsion of parameters calculated,its advantages in keeping better high-frequency feature,better noise immunity,short time-consuming and easier design are verified.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 12102312 and 41372314)State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Open Foundation, Chengdu University of Technology, China (Grant No. SKLGP2021K011)
文摘Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive tool for characterizing the microstructure of soil samples exposed to a range of damage levels induced by dry-wet cycles.Subsequently,the variations of pore distribution and permeability due to drywet cycling effects were revealed based on three-dimensional(3D)pore distribution analysis and seepage simulations.According to the results,granite residual soils could be separated into four different components,namely,pores,clay,quartz,and hematite,from micro-CT images.The reconstructed 3D pore models dynamically demonstrated the expanding and connecting patterns of pore structures during drywet cycles.The values of porosity and connectivity are positively correlated with the number of dry-wet cycles,which were expressed by exponential and linear functions,respectively.The pore volume probability distribution curves of granite residual soil coincide with the χ^(2)distribution curve,which verifies the effectiveness of the assumption of χ^(2)distribution probability.The pore volume distribution curves suggest that the pores in soils were divided into four types based on their volumes,i.e.micropores,mesopores,macropores,and cracks.From a quantitative and visual perspective,considerable small pores are gradually transformed into cracks with a large volume and a high connectivity.Under the action of dry-wet cycles,the number of seepage flow streamlines which contribute to water permeation in seepage simulation increases distinctly,as well as the permeability and hydraulic conductivity.The calculated hydraulic conductivity is comparable with measured ones with an acceptable error margin in general,verifying the accuracy of seepage simulations based on micro-CT results.
文摘Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the puncture accuracy of elderly patients, shorten the puncture time, reduce the number of punctures, and increase the amount of puncture pathological tissue, without increasing pneumothorax and hemorrhage complications. We look forward to verifying this in a phase III randomized controlled clinical study. .
基金Acknowledgements The authors gratefully acknowledge the financial support from the State Key Research Development Program of China (Grant No. 2016YFC0600705), the National Natural Science Foundation of China (Grant Nos. 51674251, 51727807, 51374213), the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 51125017), the Fund for Creative Research and Development Group Program of Jiangsu Province (Grant No. 2014-27), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. PAPD2014), and an open project sponsored by the State Key Labo- ratory for Geomechanics and Deep Underground Engineering (Grant SKLGDUE K1318) for their financial support.
文摘Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurately characterize and predict the SRM's mechanical properties. This study reports a novel numerical method incorporating microfocus computed tomography and PFC3D codes to probe the deformation and failure processes of SRM. The three-dimensional (3D) PFC models that represent the SRM's complex structures were built. By simulating the entire failure process in PFC3D, the SRM's strength, elastic modulus and crack growth were obtained. The influence of rock ratios on the SRM's strength, deformation and failure processes, as well as its internal mesoscale mechanism, were analyzed. By comparing simulation results with experimental data, it was verified that the 3D PFC models were in good agreement with SRM's real structure and the SRM's compression process, deformation and failure patterns; its intrinsic mesomechanism can be effectively analyzed based on such 3D PFC models.
基金Grant sponsor:Guangzhou Municipal Medicin &Health ProgramGrant number:2006-YB-177
文摘Objective :To investigate the influences of motion artifacts on three-dimensional (3D) reconstruction volume and conformal radiotherapy planning. Methods: A phantom which can mimic the clip motion of lung tumor along the cranial-caudal direction is constructed by step motor, small ball of polyethylene and potato. Ten different scan protocols were set and CT data of the phantom were acquired by using a commercial GE LightSpeedl6 CT scanner. The 3D reconstruction of the CT data was implemented by adopting volume-rendering technology of GE AdvantageSim 6.0 system. The reconstructed volumes of each target in different scan protocols were measured through 3D measuring tools. Thus, relative deviations of the reconstruction volumes between moving targets and static ones were determined. The three-dimensional conformal radiation therapy (3D- CRT) plans and conformal fields were created and compared for a static/moving target with the WiMRT treatment planning system (TPS). Results:For a static target, there was no obvious difference among the 3D reconstruction volumes when the CT data were acquired with different pitches and slices. The appearance of 3D reconstruction volume and 3D conformal field of a moving target was quite different from that of static one. The maximum relative deviation is nearly 90% for a moving target scanned with different scan protocols. The relative deviations are variable among the different targets, about from -39.8% to 89.5% for a smaller target and from - 18.4% to 20.5% for a larger one. Conclusion :The motion artifacts have great effects on 3 D-CRT planning and reconstruction volume, which will greatly induce distorted conformal radiation fields and false DVHs for a moving target.
基金National 973 Basic Research Program of Chinagrant number:2010CB732600+4 种基金Major Research Equipment Fund of the Chinese Academy of Sciences and Knowledge Innovation Project of the Chinese Academy of Sciences,2008 Shenzhen Controversial Technology Innovation Research Projectsgrant number:FG200805230224AConcentration plan of innovation sources of Shenzhen-R&D projects of international cooperation on science and technologygrant number:ZYA200903260065ANatural Science Foundation of Guangdong Province,China 8478922035-X0007007
文摘Three-dimensional medical image visualization becomes an essential part for medical field, including computer aided diagnosis, surgery planning and simulation, artificial limb surgery, radiotherapy planning, and teaching etc. In this paper, marching cubes algorithm is adopted to reconstruct the 3-D images for the CT image sequence in DICOM format under theVC++6.0 and the visual package VTK platform. The relatively simple interactive operations such as rotation and transfer can be realized on the platform. Moreover, the normal vector and interior point are calculated to form the virtual clipping plane, which is then used to incise the 3-D object. Information of the virtual slice can be obtained, in the mean while the virtual slice images are displayed on the screen. The technique can realize the real time interaction extraction of virtual slice on 3-D CT image. The cuboids structured can be zoomed, moved and eircumrotated by operating mouse to incise the 3-D reconstruction object. Real time interaction can be realized by clipping the reconstruction object. The coordinates can be acquired by the mouse clicking in the 3D space, to realize the point mouse pick-up as well angle and distance interactive measurement. We can get quantitative information about 3-D images through measurement.
基金This work was supported by the Basic Research and Development Project of the Korea Institute of Geoscience and Mineral Resources(Grant No.20-3115).
文摘In this study,the permeabilities of Berea and Otway sandstones were measured under different confining pressures,and porosity was investigated through mercury intrusion porosimetry(MIP).The total porosities of the Berea and Otway sandstones were approximately 17.4%and 25%,respectively.Pore size distributions of each sandstone were almost the same,but the pores in the Otway sandstone were slightly narrower.However,the permeability of the Otway sandstone was smaller than that of the Berea sandstone by one order of magnitude.Three-dimensional(3D)void geometry and geometrical properties of the void spaces relevant to flow were compared to obtain the relation between the permeability differences and porosities of the two sandstones.The 3D geometrical analysis using microfocus X-ray computed tomography(CT)was performed,and the pore geometries of both sandstones were compared using the 3D medial axis(3DMA)method.Pore and throat radii,pore coordination number,tortuosity,number of connecting paths,connecting path volume,and other factors were determined using 3DMA.The Otway sandstone was characterized by a small effective throat/pore radius ratio.Based on the fluid flow mechanism,the lower effective throat/pore radius ratio results in a lower permeability induced by the fluid energy loss,which means that the 3D geometrical shape of void spaces affects the permeability value.
基金supported by the National Natural Science Foundation of China(Nos.U2141217 and 51935003)。
文摘The real contact area(RCA)of randomly rough contacts has received a great deal of attention because it correlates strongly with friction,lubrication,sealing,and conductivity.Simulations have revealed that the RCA associated with deterministic normal squeezing loads increases when tangential loads are also applied,in a phenomenon called junction growth.However,experimental investigations of the junction growth of randomly rough contacts are rare.Here,we used X-ray computed tomography(CT)to measure junction growth when two aluminum alloy surfaces were in contact.A high-resolution experimental setup was used to apply loads and observe contact behaviors at a resolution of 4μm.The RCA and average contact gaps were computed using a three-dimensional(3D)geometric model constructed from gray CT images using the Otsu thresholding method.The results showed that the RCA increased as the normal load increased.The RCA increased by 22.67%after a tangential load was applied(junction growth),and the average gap decreased by 14.01%after a tangential load was applied.Thus,X-ray CT accurately measured the junction growth as a novel quantitative method.
基金National Natural Science Foundation of China(No.61471325)
文摘The traditional computed tomography(CT)reconstruction methods are noisy,low resolution,poor contrast,and generally not suitable to detect the smaller flaws.Besides,the filter design is also difficult.The CT characteristics reconstruction technology was brought forward to improve in these aspects,which is defined to directly reconstruct the characteristics of the projection for the best requirements not the overall image quality.The two-dimension(2D)and three-dimension(3D)CT characteristics reconstruction algorithm were firstly introduced,then by detailed analysis,experimental results and comparsion of parameters calculated,its advantages in keeping better high-frequency feature,better noise immunity,short time-consuming and easier design are verified.
文摘目的孤立性肺结节(solitary pulmonary nodule,SPN)的定性诊断十分困难,PET/CT是目前评价良、恶性病变最具优势的影像学手段之一。文中用Meta分析方法综合评价18F-脱氧葡萄糖(18Fluorodexglucose,FDG)PET/CT显像诊断恶性孤立性肺结节的价值。方法以孤立性肺结节、FDG、PET/CT等为检索词,检索1994年1月至2009年7月的Medline数据库、西文生物医学期刊文献服务系统、外文生物医学期刊全文数据库、中国学术期刊网全文数据库等相关中英文文献。对符合标准的研究进行质量评估,用MetaDisc1.4软件进行异质性检验,综合敏感性、特异性和诊断优势比,绘制汇总受试者工作特征(summary receiver operating characteristic,SROC)曲线和计算曲线下面积(the area under the curve,AUC),并进行敏感性分析。结果共检索相关文献29篇,其中11篇符合标准纳入分析,A级1篇,B级10篇,各研究之间存在异质性,按照随机效应模型合并敏感性、特异性、诊断优势比(diagnostic odds ratio,DOR)及其95%可信区间分别为91%(87%~93%)、83%(78%~87%)和51.04(23.33~111.66),AUC为0.9383,Q值为0.875 3,纳入文献稳定性较好。结论 18F-FDG PET/CT显像能灵敏、准确地诊断恶性孤立性肺结节,具有较高的临床应用价值。